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Article info    Abstract 

 
This paper considers solving a large-scale system of 

fuzzy linear equations that arise in various applications 

such as supply chain, transport, and networks (water, 

electricity, and gas), etc. The significance of applications 

containing ambiguous data necessitates the development 

of methodologies to address it. Such type of problem 

cannot be solved accurately by the analytical methods or 

the classical numerical iterative method. Here we will 

adapt a technique that transforms the fuzzy linear system 

into a multi-objective optimization problem. Then the 

obtained multi-objective optimization problem will be 

transformed into a single objective optimization 

problem. The Leap Frog method is one of the head 

methods that are used to solve single optimization 

problems. It will be introduced as a part of the 

introduced technique for solving the obtained single 

optimization problem. The convexity and the 

convergence for the approach and the Leap Frog method 

will be present. Some test examples are introduced to 

ensure the accuracy of the proposed approach. 
 

 
 

1. Introduction  

Most real-life problems involve uncertain 

data in their performance, such as planning, 

scheduling, and decision-making. The fuzzy 

number is one type that represents the un-

certainty data in the problems. 

Zadeh, the first one, introduced the fuzzy 
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theory in (Zadeh, 1965). There 
are many articles used and dealt with the 

concepts of fuzzy numbers as (Arabi Now-

deh et al., 2019; Bellman & Zadeh 1970; 

Bozanic et al., 2022; Garg & Rani, 2022; Kha-

lili Nasr et al., 2021; Lourenço & César, 2022; 

Rogers, 2019; Warid  et al., 2016). The issues 

of bipolar fuzzy linear systems and bipolar 

fuzzy complex linear systems are studied in 

(Akram et al., 2022). The existence and 

uniqueness of the solution for fully fuzzy lin-
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ear systems with trapezoidal and hexagonal 

fuzzy numbers were investigated in (Ziqan 

et al., 2022). Finding the pareto set of solu-

tions for a fully fuzzy multi-objective trans-

portation problem with the conditions of un-

certainty considered in (Niksirat, 2022). A 

fuzzy decision variable framework for large-

scale multiobjective optimization was inves-

tigated in (Xu et al., 2023). An algorithm for 

solving the fully fuzzy multi-objective linear 

fractional (FFMOLF) optimization problem 

(Arya et al., 2020). Many applications and 

problems can be formulated as a fuzzy line-

ar system, and it will be very complicated 

when the system is large scale. One of these 

applications is predicting and monitoring 

the quality of air, which is very needed to 

control and identify the adverse health ef-

fects because the low-quality (Rao et al., 

2024) can be formed in a fuzzy system mod-

el to obtain very accurate results. An en-

hanced neural network used for classifica-

tion, including intuitive, interpretable corre-

lated-contours fuzzy rules (Patro et al., 

2023). 

Moreover, solving the large-scale fuzzy sys-

tem’s problems is a hard job and is impos-

sible to solve analytically. The accuracy of 

the classical numerical methods for solving 

large-scale systems decreases more rapidly 

when the size of the system increases. 

Hence, one can go to alternative techniques 

to solve the large-scale fuzzy system. Re-

formulation of the large-scale fuzzy system 

into a multi-objective, unconstrained optimi-

zation problem is a good choice to solve it. 

Multi-objective optimization is concerned 

with optimizing problems of two or more 

conflicting objectives subject simultaneous-

ly to certain constraints. There are various 

fields that contain multi-objective optimiza-

tion problems: aircraft design, finance, au-

tomobile design, the oil and gas industry, 

wind farm design, or wherever optimal solu-

tions need to be found in the manner of 

trade-offs between conflict objectives. 

Methods of solving multi-objective optimiza-

tion problems updated in some ways such 

as: artificial intelligence methods, trans-

forming the multi-objective optimization 

problem to a single objective optimization 

problem, etc. 

In this study, we are concerned with solving 

those important problems that contain fuzzy 

variables. So, we will depend on the way of 

transforming the multi-objective optimiza-

tion problem into an unconstrained single 

objective optimization problem. Then we 

use one of the successful methods for solv-

ing unconstrained optimization problems, 

the Leap-Frog method created by (Snyman, 

1989). The Leap-Frog method is one of the 

first-degree methods that depends on the 

gradient and the function evaluation. 

Some points that this study contributes can 

be summarized as: 

a. Solving the large number of applica-

tions that can be modeled in fuzzy 

form. 

b. Dealing with fuzzy variable problems 

remains at the top trend. 

c. Solving problems that have a huge 

number of fuzzy variables. 

d. Finding an accurate solution for the 

systems with fuzzy data. 

This paper is organized as follows: Section 2 

previews some of the elementary and defi-

nitions of the fuzzy numbers. In Section 3, we 

introduce the fuzzy linear system. The pro-

posed approach will be in Section 4. Con-

vexity and convergence are discussed in 

Section 5. Numerical results for some exam-

ples are presented in Section 6. Finally, the 

conclusion is in Section 7. 

2. Preliminaries  

In this section, we present some elementary 

that will be used next. 

The parametric form of an arbitrary fuzzy 

number is represented as an ordered pair of 

functions (s(r)  , s̅(r)), 0 ≤ r ≤ 1 and satisfy 

the following conditions: (Goetschel & 

Voxman, 1986; Ma et al., 1999): 

1) 𝑠(𝑟) is a left-continuous bounded 

non-decreasing function over [0,1],  
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2) s̅(r)  is a left-continuous bounded 

non-increasing function over [0,1], 
3) 𝑠(𝑟) ≤ 𝑠̅(𝑟) , 0 ≤ 𝑟 ≤ 1.  

The fuzzy numbers space, {s(r), s̅(r)}, by ap-

propriate definitions, becomes a convex 

cone E1. The addition and the scalar multi-

plication of fuzzy numbers for any two arbi-

trary fuzzy numbers s = (s, s̅), t = (t, t̅) ∈

E1 , k ∈  R are Dubois & Prade (1980): 

(s + t)(r) = s(r) + t(r),    (s + t)(r) = s̅(r) +

t̅(r).                                                                (1)

 

{
(ks)(r) = ks(r), (ks)(r) = ks̅(r)  if  k ≥ 0,

(ks)(r) = ks̅(r), (ks)(r) = ks(r)  if  k < 0.
 (2) 

Definition 2.1. )Bazaraa  et al. ,2006) If the 

function f(U): S → R, where S is a nonempty 

convex set in Rn. Then f(U) is called convex 

on S if:  

f(μU1 + (1 − μ)U2) ≤ μf(U1) + (1 − μ)f(U2),          
(3) 

for each U1, U2 ∈ S and for each μ ∈ (0,1). 
The function f is said to be strictly convex on 

S if the inequality is true as a strict inequali-

ty. 

3. Fuzzy linear system of equations  

The fuzzy linear system of equations (FLSE) 

is defined as in the following definition. 

Definition 3.1. (Friedman et al., 1998) The 

system of the form,  

𝑎11𝑢1 + 𝑎12𝑢2+. . . +𝑎1𝑛𝑢𝑛 = 𝑣1,
𝑎21𝑢1 + 𝑎22𝑢2+. . . +𝑎2𝑛𝑢𝑛 = 𝑣2,
                        .
                        .
                        .
𝑎𝑛1𝑢1 + 𝑎𝑛2𝑢2+. . . +𝑎𝑛𝑛𝑢𝑛 = 𝑣𝑛 ,

        (4) 

such that the coefficients matrix A =
(aij),   i, j = 1, . . . , n is n × n crisp matrix and 

vi ∈ E
1 , i = 1, . . . , n is called a fuzzy system of 

linear equations. 

Definition 3.2. (Abbasbandy & Jafarian, 

2006) A fuzzy number vector (u1, u2 , . . . , un)
⊤ 

given as ui = (ui(r), u̅i(r)) , i = 1, . . . , n, 0 ≤

r ≤ 1 is called a solution of Eq. (4) if, 

 

 ∑nj=1 aijuj = vi,                         (5) 

 ∑nj=1 aijuj = vi.                         (6) 

  The systems of equations (5) and (6) can be 

converted to the system:  

 DU = V,                                      (7) 

 where, U = 

(u1(r), u2(r), … , un(r), −u̅1(r), −u̅2(r), … ,−u̅n(r))
⊤

,V =
(v1(r), v2(r), . . . , vn(r), −v̅1(r), −v̅n(r), . . . , −v̅n(r))

⊤

and D = (dlm),    l, m = 1, . . . , p is p × p non-

negative crisp matrix, p = 2n and dlm com-

pute as: 

dlm =

{
 
 

 
 
aij,   if  aij > 0   and    l, m = 1,2, . . . , n,
−aij,   if  aij < 0  and l = 1,2, . . . , n,m = n + 1,n + 2, . . . , p,
−aij,    if    aij < 0  and    l = n + 1, n + 2, . . . , p,   m = 1,2, . . . , n,
aij,    if    aij > 0    and    l, m = n + 1, n + 2, . . . , p,
0,    otherwise.

 

Definition 3.3. (Friedman et al.,1998) If U =
{(ui(r), u̅i(r)), i = 1, . . . , n} is the unique solu-

tion of DU = V and (vi(r), v̅i(r)) are linear 

functions of r, then the fuzzy number T =
{(ti(r), t̅i(r)), i = 1, . . . , n} defined as: ti(r) =

min{ui(r), u̅i(r), ui(1), u̅i(1)}, t̅i(r) =
max{ui(r), u̅i(r), ui(1), u̅i(1)} is the fuzzy solu-

tion of DU = V.   

Definition 3.4. In addition to definition 3 if 

(ui(r), u̅i(r)), i = 1, . . . , n are all fuzzy num-

bers, then ti(r) = ui(r), t̅i(r) = u̅i(r) and T is 

a strong fuzzy solution. Otherwise T is a 

weak fuzzy solution.   

Theorem 3.5. Friedman et al. (1998) The 

unique solution U of (7) is always a fuzzy 

vector for arbitrary vector V, if and only if 

D−1 is non-negative for the non-singular ma-

trix D.  

4. The Proposed strategy  

Our approach depends on transforming the 

system of equations (7) to be an uncon-

strained multi-objective optimization prob-

lem such as: 
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F = DU − V,    where    F = (f1, f2, . . . , fp)
⊤.     (8) 

In general, there are many strategies for 

solving the multi-objective optimization 

problem (MOOP). One of the appropriate 

strategies is the weight-sum method. Here 

we aim to adapt this technique to transform 

the MOOP to a single objective optimization 

problem (SOOP). Since the system under 

study is a linear system, the summing of the 

objective functions with weight will deter-

mine the extreme points; there is no guaran-

tee of finding the minimum point. Miettinen 

(1998). In another view, it is clear that the 

system of equations (8) transformed to be 

seeking to minimize the error. So, we will be 

based on the square of the objectives as fol-

lows:   

Φ(U) = ∑
p
l=1 ωlfl

2(U),                                      (9) 

 where ω > 0 and ∑
p
l=1 ωl = 1. We will de-

pend on equal weight for the objective func-

tions in this study: that is, the objectives 

have the same importance. 

The Leap Frog Algorithm (LFA) of Snyman 

(1989) is one of the best algorithms for solv-

ing a large-scale, unconstrained single op-

timization problem. Hence, it will be 

adapted in the proposed algorithm in order 

to solve equation (9). In the next we explain 

the main steps of the LFA. The mechanism of 

the LFA based on the iterations: 

Uk+1 = Uk + λSk,    k = 0,1,2, . ..                     (10) 

where U0,  S0 are guessed value and λ is 

constant chosen to be > 0.  

Sk = Sk−1 + λGk.                                             (11) 

Gk = −∇Φ(Uk).                                               (12) 

Since λ > 0 the sufficient condition for de-

scent (i. e. ΔΦk < 0) is 

Sk
⊤Gk+1 > 0.                                                     (13) 

So, the basis for using the LFA in the minimi-

zation problem should be tested for every 

step to satisfy the sufficient condition (13) 

for the descent. The mechanism process 

flow diagram is previewed in figure 1. 

 

Figure 1: The process flow diagram  

5. Problem convexity and conver-

gence 

Here we study the convexity of the problem 

(8) and the convergence of the proposed 

approach. based on definition (2.1), one can 

prove the convexity of the system, which is 

essentially for applying LFA, as follows: 

Let we take a function fl ∈ F where,  

fl(U) = dl1u1 + dl2u2+. . . +dlnun
− dl(n+1)u1−. . . −dlpun − vl, 

and let Q = (q1 , q2, . . . , qp), T = (t1, t2, . . . , tp) 

are two solutions for fl then,  
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𝑓𝑙(𝜇𝑄 + (1 − 𝜇)𝑇) = 𝑑𝑙1(𝜇𝑞1 + (1 − 𝜇)𝑡1) + 𝑑𝑙2(𝜇𝑞2 + (1 − 𝜇)𝑡2)+. . . +𝑑𝑙𝑛(𝜇𝑞𝑛

+ (1 − 𝜇)𝑡𝑛) − 𝑑𝑙(𝑛+1)(𝜇𝑞1 + (1 − 𝜇)𝑡1)−. . . −𝑑𝑙𝑝(𝜇𝑞𝑛

+ (1 − 𝜇)𝑡𝑛) − 𝑣𝑙(𝜇 + (1 − 𝜇)).

= 𝜇[𝑑𝑙1𝑞1 + 𝑑𝑙2𝑞2+. . . . +𝑑𝑙𝑛𝑞𝑛 − 𝑑𝑙(𝑛+1)𝑞1−. . . −𝑑𝑙𝑝𝑞𝑛 − 𝑣𝑙]

+ (1 − 𝜇)[𝑑𝑙1𝑡1 + 𝑑𝑙2𝑡2+. . . +𝑑𝑙𝑛𝑡𝑛 − 𝑑𝑙(𝑛+1)𝑡1−. . . −𝑑𝑙𝑝𝑡𝑛 − 𝑣𝑙]

= 𝜇𝑓𝑙(𝑄) + (1 − 𝜇)𝑓𝑙(𝑇).

Hence the functions in problem (8) are all 

convex functions. To this end the conver-

gence of applying LFA and the existence of 

at most one optimal solution are verified by 

theorem (4.1) in (Snyman, 1989). 

6. Numerical examples  

  In this section we consider three examples 

to ensure the accurate of our approach. 

 Example 6.1. Studying the following FLSE 

u1 + 2u2 − 3u3 = (−23 + 18r, 5 − 10r),
2u1 − 5u2 + 7u3 = (24r, 66 − 42r),
−9u1 + u2 + 2u3 = (−29 + 12r, 5 − 22r).

  (14) 

From equations (1), (2), (5), (6) the system 

converts to the form of equations (8) to be: 

 

[
 
 
 
 
 
f1
f2
f3
f4
f5
f6]
 
 
 
 
 

=

[
 
 
 
 
 
1 2 0 0 0 3
2 0 7 0 5 0
0 1 2 9 0 0
0 0 3 1 2 0
0 5 0 2 0 7
9 0 0 0 1 2]

 
 
 
 
 

 

[
 
 
 
 
 
u1
u2
u3
−u1
−u2
−u3]

 
 
 
 
 

−

[
 
 
 
 
 
−23 + 18r
24r
−29 + 12r
−5 + 10r
−66 + 42r
−5 + 22r ]

 
 
 
 
 

.       (15) 

The results of applying the proposed ap-

proach for the equations in (15) after trans-

formed by equation (9) are present in figure 

2 and compared with the exact solutions 

(16): 

u1 = (u1 , u1) = (2 + r, 4 − r),

u2 = (u2, u2) = (1 + r, 5 − 3r),

u3 = (u3, u3) = (3 + r, 9 − 5r).
            (16) 

The objective error (9) and the numerical 

error for the proposed approach present in 

table 1. The error for the variables 

ui with 0 ≤ r ≤ 1 is previewed in figure 3. 

 

n p Objective error ||. ||2 

3 6 1.8554E-27 1.1181E-13 

Table 1: Execution data for example 6.1 with 𝐫 = 𝟏 

 

Figure 2: Exact and approximate solutions (circles for 𝐮𝐢 and diamond for 𝐮𝐢) for example 6.1. 
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Figure 3: The error for the variables 𝐮𝐢 for Example 6.1.  

Example 6.2. In considering the following 

FLSE 

u1 − 2u2 + 3u4 = (14r, 23 − 9r),
−3u1 − 5u2 + 4u3 = (−34 + 17r, 12 − 29r),
4u1 + 3u2 − u3 − 2u4 = (−22 + 26r, 19 − 15r),
−6u3 + u4 = (−20 + 20r, 8 − 8r).

                                  (17) 

Again, we have: 

[
 
 
 
 
 
 
 
 
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6
𝑓7
𝑓8]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
1 0 0 3 0 2 0 0
0 0 4 0 3 5 0 0
4 3 0 0 0 0 1 2
0 0 0 1 0 0 6 0
0 2 0 0 1 0 0 3
3 5 0 0 0 0 4 0
0 0 1 2 4 3 0 0
0 0 6 0 0 0 0 1

]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑢1
𝑢2
𝑢3
𝑢4
−𝑢1
−𝑢2
−𝑢3
−𝑢4]

 
 
 
 
 
 
 
 

−

[
 
 
 
 
 
 
 
14𝑟
−34 + 17r
−22 + 26𝑟
−20 + 20𝑟
−23 + 9𝑟
−12 + 29𝑟
−19 + 15𝑟
−8 + 8𝑟 ]

 
 
 
 
 
 
 

.                                (18)

Figure 4 preview the obtained results of the 

proposed approach for the equations in (18) 

after using equation (9), and compared with 

the exact solutions (19): 

u1 = (u1 , u1) = (−2 + 4r, 3 − r),

u2 = (u2, u2) = (2 + r, 5 − 2r),

u3 = (u3, u3) = (r, 4 − 3r),

u4 = (u4, u4) = (4 + 2r, 8 − 2r).

           (19) 

The objective error (9) and the numerical 

error for the proposed approach preview in 

table 2. The error for the variables 

ui with 0 ≤ r ≤ 1 is preview in figure 5. 

 

n p Objective error ||. ||2 

4 8 5.6112E-27 2.0451E-13 

Table 2: Execution data for example 6.2 with 𝐫 = 𝟏  



16 Abdelmegid, et al.,                               SVU-IJBS, VOL.2, NO. 1, (2025), 10‒21      

 
Figure 4: Exact and approximate solutions (circles for 𝐮𝐢and diamond for 𝐮𝐢) for example 6.2. 

 
Figure 5: The error for the variables 𝐮𝐢 for example 6.2.  

 

Example 6.3. In considering example 5.1. 

in Dehghan & Hashemi (2006) 

8u1 + 2u2 + u3 − 3u5 = (r, 2 − r),   

8u1 + 2u2 + u3 − 3u5 = (r, 2 − r),  

−2u1 + 5u2 + u3−u4 + u5 = (4 + r, 7 − 2r),   (20) 

u1 − u2 + 5u3 + u4 + u5 = (1 + 2r, 6 − 3r),   

−u3 + 4u4 + 2u5 = (1 + r, 3 − r), 

u1 − 2u2 + 3u5 = (3r, 6 − 3r). 

Then we have the system as in equation (21) 

given below.  

Figure 6 presents a comparison between the 

proposed approach solution in figure 6(a) 

and the exact solution (22) obtained by 

Dehghan & Hashemi (2006) in figure 6(b) 

with 0 ≤ r ≤ 1. 

u1 = (u1, u1) = (. 7287 − .33057r, .044135 + .35399r),

u2 = (u2, u2) = (.61418 + .16626r, 1.0773 − .29682r),

u3 = (u3, u3) = (.12628 + .29059r, .91822 − .50136r),

u4 = (u4, u4) = (. 24192 − .33149r, −.4158 + .32622r),

u5 = (u5, u5) = (. 47528 + .91231r, 2.3947 −  1.0072r).    (22)

 

 

The objective error (9) and the numerical 

error for the proposed approach preview in 

table 3. The error for the variables 

ui with 0 ≤ r ≤ 1 is previewed in figure 7.
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[
 
 
 
 
 
 
 
 
 
 
f1
f2
f3
f4
f5
f6
f7
f8
f9
f10]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
8
0
1
0
1
0
2
0
0
0

   

 2
5
0
0
0
0
0
1
0
2

  1
  1

    

5
0
0
0
0
0
1
0

  0
   0

    

1
4
0
0
1
0
0
0

    0
     1

 

    1
    2

    

3
3
0
0
0
0

       0
       2

        

0
0
0
8
0
1
0
1

      0
      0

       

1
0
2
2
5
0
0
0

        0
       0

        

0
1
0
1
1
5
0
0

     0
      1

        

0
0
0
0
0
1
4
0

   3
    0

     

0
0
0
0
1
1
2
3]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
u1
u2
u3
u4
u5
−u1
−u2
−u3
−u4
−u5]

 
 
 
 
 
 
 
 
 
 

−

[
 
 
 
 
 
 
 
 
 
r
4 + r
1 + 2r
1 + r
3r
2 − r
7 − 2r
6 − 3r
3 − r
6 − 3r]

 
 
 
 
 
 
 
 
 

.                 (21 (

 

n p Objective error ||. ||2 

5 10 2.1940e-28 3.2204e-14 

Table 3: Execution data for example 6.3 with 𝐫 = 𝟏 

 

Table 4: Present a comparison between the 

obtained error from the proposed approach 

and the previewed error in Dehghan & 

Hashemi (2006). It is clear the difference be-

tween the proposed approach error and the 

other methods error. 
 

 

Figure 6: (a) Approximate solution for example 6.3. by the introduced approch, (b) The exact 

solution of equation (22). 

 

Method 

The pro-

posed ap-

proach 

Jacobi 

Forward 

Guass- 

seidel 

Backward 

Guass- 

seidel 

EGS 
Forward 

SOR 

Backward 

SOR 
JOR 

Error 3.2204e-14 0.0045 0.0034 0.0014 0.0033 0.0012 0.0035 0.0027 

Table 4: Comparison between errors in different methods. 

 



18 Abdelmegid, et al.,                               SVU-IJBS, VOL.2, NO. 1, (2025), 10‒21      

 

Figure 7: The error for the variables 𝐮𝐢 for example 6.3.  

 

Example 6.4. Studying this one of the most important examples,  

 

[
 
 
 
 
 
 
 
−2 1 0 0 0 . . . . . 0 0 0
1 −2 1 0 0 . . . . . 0 0 0
.
.
.
0 0 0 0 0 . . . . . 1 −2 1
0 0 0 0 0 . . . . . 0 1 −2

]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
u1
u2
.
.
.
un−1
un ]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
(  −5 + 3r, 1 − 3r)  

(  −4 + 4r, 4 − 4r)  
.
.
.
(  −4 + 4r, 4 − 4r)  

(  −5 + 3r, 1 − 3r) ]
 
 
 
 
 
 

.                   (23) 

 Similarly, we have: 

[
 
 
 
 
 
 
 
 
 
 
 
 
f1
f2
.
.
.
.
.
.
.
.
fp−1
fp ]

 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
0 1 0. . . . .0 0 0 2 0 0. . . . .0 0 0
1 0 1. . . . .0 0 0 0 2 0. . . . .0 0 0
.
.
0 0 0. . .1 0 1 0 0 0. . .0 2 0
0 0 0. . .0 1 0 0 0 0. . .0 0 2
2 0 0. . .0 0 0 0 1 0. . .0 0 0
0 2 0. . .0 0 0 1 0 1. . .0 0 0
.
.
0 0 0. . .0 2 0 0 0 0. . .1 0 1
0 0 0. . .0 0 2 0 0 0. . .0 1 0 ]

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
u1
u2
.
.
un−1
un
−u1
−u2
.
.
−un−1
−un ]

 
 
 
 
 
 
 
 
 
 
 
 

−

[
 
 
 
 
 
 
 
 
 
 
 
−5 + 3r
−4 + 4r
.
.
−4 + 4r
−5 + 3r
−1 + 3r
−4 + 4r
.
.
−4 + 4r
−1 + 3r]

 
 
 
 
 
 
 
 
 
 
 

.                   (24) 

The results of this example are introduced in 

figure 8, figure 9 and table 5. When the 

number of the variables is 20, we present in 

figure 8 the approximate solutions com-
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pared with the exact solutions ui = (1 +
r, 3 − r), for i = 1,2, . . . ,20. Also figure 9 pre-

view the execution time with the number of 

objective functions p after interpolation the 

obtained data by cubic spline. Table 5 pre-

sents the numerical error for the proposed 

approach and the objective error (9) for var-

ies numbers of fuzzy variable when r = .5. 

 

  
Figure 8: Exact and approximate solutions (circles for 𝐮𝐢 and diamond for 𝐮𝐢) for example 6.4. 

 
Figure 9: CPU time and the number of objective functions p (circles for the obtained data and the line for 

interpolated data) for example 6.4.   

 

Remark 6.4. Applying the well-known 

methods Jacobean and Gauss-Seidel for 

solving the general case of our study fails. 

Because these methods must divide over the 

diagonal elements of the matrix D in equa-

tion (8), that means the diagonal elements  

dll must be, > 0 and this is not satisfied in all 

problems. Lubna Inearat and Naji Qatanani 

in the paper Inearat & Atanani (2018) de-

pended on Jacobean and Gauss-Seidel 

methods for solving small systems, but all 

solved examples have values > 0 in the di-

agonal elements. Even if there are classical 

iterative methods that can treat this prob-

lem, or one can manipulate the system of 

equations to attain the requirement of the 

classical methods. Still, the large scale of the 

problem is a big handicap, and the numeri-
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cal method will not diverge when n increas-

es. 

n p Objective error ||. ||2 

1 2 7.36861E-27 2.42848E-13 

2 4 2.90005E-28 2.41376E-14 

3 6 9.37173E-27 5.01252E-14 

5 10 1.19294E-27 3.33524E-14 

10 20 4.77772E-25 6.08422E-14 

25 50 1.4569E-25 1.92699E-14 

50 100 4.47527E-24 2.52075E-14 

75 150 8.12074E-22 2.18041E-13 

100 200 1.19521E-22 7.26635E-14 

Table 5: Execution data for example 6.3 with 𝐫 =. 𝟓  

 

Conclusion 

This paper introduced a modified approach 

to solve one of the most important problems. 

The new approach solves the large scale of 

a fuzzy linear system by transforming the 

system into a multi-objective optimization 

problem. Then the multi-objective system is 

converted to a single optimization problem 

by the weight sum method. Our strategy is 

to solve the resulting single-objective prob-

lem numerically with high accuracy. We 

proved that the multi-objective functions 

resulting from the fuzzy linear system are 

convex. Applying the LFA for the resulting 

convex function makes the iterated approx-

imations tend to be the optimal solution. The 

previewed results for some examples are 

satisfied with a small acceptable error. Also, 

the CPU time is small enough with increas-

ing the number of fuzzy variables. A com-

parison is made between the proposed ap-

proach and other approaches to ensure the 

accuracy of the approach. The proposed 

approach can be extended to deal with 

more complicated stochastic systems. 
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