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Article info    Abstract 

 
The Bell polynomials, which known in name of Eric 

Temple Bell, are widely used in combinatorial 

mathematics to explore set partitions. The Bell 

polynomials have a relation to Bell numbers and Stirling 

numbers. They can also be found in a various 

applications, like the Faà di Bruno formula. In this paper, 

we define generalized Bell polynomials, and investigate 

basic properties of these polynomials. We find Bell 

polynomials for the Beltrami operator. Also, we obtain 

explicit formulas for the powers of the Beltrami operator 

and a generalized Beltrami operator. We introduce an 

application of the obtained Bell polynomial for the 

Beltrami operator, namely, a Beltrami- Faà di Bruno 

formula is established. Illustrative examples are given. 
 

 
1. Introduction  

Bell polynomials with partial multivariate 

introduced by E.T. Bell (Bell, 1934; Aboud et 

al., 2017). However, the credit for their 

name comes backs to the work of Riordan 

(Riordan, 2014), who investigated the Faa' di 

Bruno formula (Faa' di Bruno, 1855; Faa' di 

Bruno, 1857) and discovered how to express 

the higher order derivative of a composition 

𝑓𝜊𝑔 in terms of the derivatives of both 𝑓 and 

𝑔. 

Bell polynomials 𝐵𝑛 = 𝐵𝑛(𝑡1, 𝑡2, … 𝑡𝑛), 𝑛 =

0, 1, 2, …, have so many uses in combinator-

ics, analysis, algebra, probability theory, 
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and other fields. Just a few fundamental ex-

amples will suffice: 

1) In probability theory, the 𝑛𝑡ℎ moment of a 

probability distribution is a full Bell poly-

nomial of the cumulants.  

2) Lagrange inversion and Bell polynomials 

are related. The Faa’ di Bruno formula leads 

to this. 
3) In various combinatorial formulae for the 

Bell polynomials, Lah numbers, Stirling 

numbers, and other combinatorial numbers 

are involved. 

The Faa' di Bruno formula and several relat-

ed combinatorial identities have been pre-
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sented in (Comtet, 2012). Many applications 

and formulae of the Bell polynomials have 

been introduced in the work of Mihoubi 

(Mihoubi, 2008). In (Comtet, 2012) 

𝐵𝑛,𝑘(𝑡1, 𝑡, … , 𝑡𝑛−𝑘+1)                                                

= ∑
𝑛ǃ

∏ ℓ𝑖ǃ
𝑛−𝑘+1
𝑖=1

∏ (
𝑡𝑖

𝑖ǃ
)

ℓ𝑖
𝑛−𝑘+1

𝑖=11≤𝑖≤𝑛−𝑘+1
ℓ𝑖∈{0}∪ℕ

∑ 𝑖ℓ𝑖=𝑛𝑛−𝑘+1
𝑖=1

∑ ℓ𝑖=𝑘𝑛−𝑘+1
𝑖=1

 .                     (1.1) 

The Faa' di Bruno formula can be described 

in terms of the Bell polynomials of the sec-

ond kind 𝐵𝑛,𝑘(𝑡1, 𝑡, … , 𝑡𝑛−𝑘+1) by, see (Feng 

et al., 2017) 

𝑑𝑛

𝑑𝑡𝑛
 𝑓 ∘ 𝑔(𝑡)                                                                              

= ∑ 𝑓(𝑗)(𝑔(𝑡))𝐵𝑛,𝑗 (𝑔′(𝑡), … , 𝑔(𝑛−𝑗+1)(𝑡))

𝑛

𝑗=0

.       (1.2) 

By (1.1) we can easily deduce that, for 𝑛 ≥

𝑗 ≥ 0, 

𝐵𝑛,𝑗(1,0, … ,0) = 𝐵𝑛,𝑗 (
𝑑

𝑑𝑡
𝑡,

𝑑2

𝑑𝑡2
𝑡, … ,

𝑑𝑛−𝑗+1

𝑑𝑡𝑛−𝑗+1
𝑡)

= (
0

𝑛 − 𝑗
) = {

1,   𝑛 = 𝑗,
0,   𝑛 ≠ 𝑗.

               (1.3) 

In (Feng et al., 2017; Feng et al., 2020a), it 

was established that the second kind Bell 

polynomials 𝐵𝑛,𝑗(𝑡1, 𝑡2 , … , 𝑡𝑛−𝑘+1) satisfy 

𝐵𝑛,𝑗(𝑡, 1, 0, … ,0) =
1

2𝑛−𝑗

𝑛ǃ

𝑗ǃ
(

𝑗
𝑛 − 𝑗

) 𝑡2𝑗−𝑛 , 0 ≤ 𝑗 ≤ 𝑛,       (1.4)           

where (0
0

) = 1, and (
𝑟
𝑠

) = 0 for 0 ≤ 𝑟 < 𝑠. Since 

𝐵𝑛,𝑗(𝛼𝛽𝑡1, 𝛼𝛽2𝑡2, … , 𝛼𝛽𝑛−𝑗+1𝑡𝑛−𝑗+1)   

= 𝛼𝑗𝛽𝑛𝐵𝑛,𝑗(𝑡1, 𝑡2, … , 𝑡𝑛−𝑗+1), 𝑛 ≥ 𝑗 ≥ 0,   (1.5) 

we can rewrite (1.4) as, see (Comtet, 2012) 

𝐵𝑛,𝑗 (
𝑑

𝑑𝑡
𝑡2,

𝑑2

𝑑𝑡2
𝑡2, … ,

𝑑𝑛−𝑗+1

𝑑𝑡𝑛−𝑗+1
𝑡2)

= 𝐵𝑛,𝑗(2𝑡, 2, 0, … , 0)       

                             = 2𝑗𝐵𝑛,𝑗(𝑡, 1, 0, … , 0)  

    =
𝑛ǃ

𝑗ǃ
(

𝑗
𝑛 − 𝑗

) (2𝑡)2𝑗−𝑛 ,        (1.6)  

for 𝑛 ≥ 𝑗 ≥ 0. Thus, combining (1.2) with 

(1.6), helps in computing the higher order 

derivative for functions of the type f(at2 +

bt + c) see (Feng et al., 2020a), such as  

e±t2
, sin(t2), cos(t2), ln(1 ± t2),

ln(1 ± t2)α , arcsin t , arccos t, arctan t .
    

In (Feng el al., 2019; Edition et al., 2019), the 

following formulas are obtained 

B2n,j(0, 2!, … , 0, (2n)!) =
(2n)!

j!
(

n − 1
j − 1

), 

B2n−1,j(0, 2!, … , 0, (2j − 2)!, 0) = 0, 

B2n,2j(1!, 0, … , (2n − 1)!, 0) =
(2n)!

(2j) !
(

n + j − 1
2j − 1

), 

B2n,2j−1(1!, 0, … , (2n − 1)!, 0) = 0, 

     B2n−1,2j−1(1!, 0, … , (2n − 1)!, 0)     

=
(2n − 1)!

(2j − 1) !
(

n + j − 2
2j − 2

), 

B2n−1,2j(1!, 0, … , 0, (2n − 1)!) = 0, 

For simplicity, we denote  

𝜆(𝑛, 𝑗) = 𝐵𝑛,𝑗 (0, 2!, 0, 4!, … , (𝑛 − 𝑗

+ 1)!
1 + (−1)𝑛−𝑗+1

2
) 

and 

𝜇(𝑛, 𝑗) = 𝐵𝑛,𝑗 (1!, 0, 3! ,0, … , (𝑛 − 𝑗 + 1)!  
1+(−1)𝑛−𝑗+1

2
). 

Combining these results, the above claims 

can be rewrite as  

𝜆(2𝑛, 𝑗) =
(2𝑛)!

𝑗 !
(

𝑛 − 1
𝑗 − 1

), 

 𝜆(2𝑛 − 1, 𝑗) = 0, 

𝜇(2𝑛, 2𝑗) =
(2𝑛)!

(2𝑗)!
(

𝑟 + 𝑗 − 1
2𝑗 − 1

), 

 𝜇(2𝑛, 2𝑗 − 1) = 0, 

𝜇(2𝑛, 2𝑗 − 1) =  
(2𝑛 − 1)!

(2𝑗 − 1)!
(

𝑛 + 𝑗 − 2
2𝑗 − 2

), 

         𝜇(2𝑛 − 1, 2𝑗) = 0. 

In (Feng  et al., 2020b) the authors surveyed 

many formulae and applications of the poly-

nomials 𝐵𝑛,𝑗(𝑡1, 𝑡2, … , 𝑡𝑛−𝑗+1), in which 

𝑡1, 𝑡2, … , 𝑡𝑛−𝑗+1 were replaced by some ele-

mentary functions. Here, we restate some of 

these applications: 

1) Exponential function. The 𝑛𝑡ℎ derivative 

for a function of the type 𝑓(𝑒𝑡) like as 
1

𝑒±𝑡±1
, 
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can be found by the Faa' di Bruno formula 

(1.2). It needs to compute  

𝐵𝑛,𝑗((𝑒±𝑡)′, (𝑒±𝑡)′′, … , (𝑒±𝑡)(𝑛−𝑗+1)) 

 = 𝐵𝑛,𝑗(±𝑒±𝑡 , (±1)2𝑒±𝑡 , … , (±1)𝑛−𝑗+1𝑒±𝑡  ) 

= (±1)𝑛𝑒±𝑗𝑡𝐵𝑛,𝑗(1, 1, … , 1).                              

In (Feng et al., 2020b), the following result is 

listed 

𝑆(𝑛, 𝑗) = 𝐵𝑛,𝑗(1, 1, … , 1), 

where 𝑆(𝑛, 𝑗) points to the second kind Stir-

ling numbers. Thus, we can easily obtain 

(
1

𝑒±𝑡 ± 1
)

(𝑛)

= (±1)𝑛 ∑  

𝑛

𝜈=0

(−1)𝜈𝜈! 𝑆(𝑛, 𝜈)
𝑒±𝜈𝑡

(𝑒±𝑡 ± 1)𝜈+1
 . 

2) Logarithmic function. The 𝑛𝑡ℎ derivative 

of the composition 𝑓(ln(𝑡 + 1)), for example 
1

ln(𝑡+1)
, can be obtained by using identities 

(1.2) and (1.5). Here, one needs to compute  

𝐵𝑛,𝑗([ln(1 + 𝑡)]′ , [ln(1 + 𝑡)]′′ , … , [ln(1 + 𝑡)](𝑛−𝑗+1)) 

=
(−1)𝑛−𝑗

(1 + 𝑡)𝑛
𝐵𝑛,𝑗(0!, 1!, … , (𝑛 − 𝑗)!). 

In (Feng et al 2020b), the following result is 

listed 

𝐵𝑛,𝑗(0!, 1!, … , (𝑛 − 𝑗)!) = (−1)𝑛−𝑗𝑠(𝑛, 𝑗), 

where 𝑠(𝑛, 𝑗) denotes the first kind Stirling 

numbers. Hence, we have 

[
1

ln (1 + 𝑡)
]

(𝑛)

=
1

(1 + 𝑡)𝑛
∑

(−1)𝜈𝜈! 𝑠(𝑛, 𝜈)

ln𝜈+1 (1 + 𝑡)

𝑛

𝜈=0

.  

Further, we recall some facts on the Bell 

polynomials. The recursion equation 

(Schimming & Rida, 1996) 

𝐵0 = 1,   𝐵𝑛+1 = ∑ (
𝑛
𝜈

) 𝐵𝑛−𝜈𝑡𝜈+1

𝑛

𝜈=0

,   𝑛 ≥ 1.    (1.7) 

And the generating function of the Bell pol-

ynomials is, see (Feng et al., 2019)  

∑
𝐵𝑛

𝑛!
𝑥𝑛

∞

𝑛=1

=  exp ∑
𝑡𝑛

𝑛!
𝑥𝑛

∞

𝑛=1

                          (1.8) 

Bell polynomials 𝐵𝑛 = 𝐵𝑛(𝑡1 , 𝑡2, … , 𝑡𝑛) can be 

expressed explicitly as, see (Feng et al., 

2019; Feng et al., 2020a; Kaufmann, 1968; 

Rida, 1996) 

𝐵𝑛(𝑡1, 𝑡2, … , 𝑡𝑛)                                                          

= ∑
𝑛!

𝑗!
 (

𝑡1

1!
)

𝑗1

(
𝑡2

2!
)

𝑗2

… (
𝑡𝑛

𝑛!
)

𝑗𝑛

 ‖𝑗‖=𝑛

,                           (1.9) 

 where 𝑗1 ≥ 0 , 𝑗2 ≥ 0 , … , 𝑗𝑛 ≥ 0 , 𝑗! = 𝑗1! 𝑗2! … 𝑗𝑛!, 

and ‖𝑗‖ = 𝑗1 + 2𝑗2 + ⋯ + 𝑛𝑗𝑛 . 

Further, the bell polynomials can be de-

composed into its homogeneous parts as. 

See (Schimming & Rida, 1996) 

𝐵𝑛(𝑡1, 𝑡2, … , 𝑡𝑛)  = ∑ 𝐵𝑛,𝑗(𝑡1, 𝑡2, … , 𝑡𝑛)

𝑛

𝑗=1

,   (1.10) 

with 

𝐵𝑛,𝑗(𝑡1, 𝑡2, … , 𝑡𝑛)                                                                

= ∑
𝑛!

𝑗!
 (

𝑡1

1!
)

𝑗1

(
𝑡2

2!
)

𝑗2

… (
𝑡𝑛

𝑛!
)

𝑗𝑛

|𝑗|=𝑘

 ‖𝑗‖=𝑛

,                         (1.11) 

where 𝑗 = (𝑗1, 𝑗2, ⋯ , 𝑗𝑛), |𝑗| = 𝑗1 + 𝑗2 + ⋯ +𝑗𝑛 , and 

‖𝑗‖ = 𝑗1 + 2𝑗2 + ⋯ + 𝑛𝑗𝑛, is called 𝑘-

homogeneous Bell polynomials, that is, 

𝐵𝑛,𝑘(𝜆𝑡1, 𝜆𝑡2, … , 𝜆𝑡𝑛) = 𝜆𝑘𝐵𝑛,𝑘(𝑡1, 𝑡2, … , 𝑡𝑛) .    (1.12) 

The 𝑑-homogenous polynomials 𝐵𝑛,𝑘 appear 

in the iterated chain rule of Faa di Bruno 

formula, see (Faa'di Bruno, 1855; Faa'di Bru-

no, 1857; Schimming & Rida, 1996; Kauf-

mann, 1968; Rida, 1996).  

Furthermore, Bell polynomials help find ex-

plicit formulas for many differential opera-

tors and thus motivate to study of higher-

order differential equations. The Beltrami 

operator is one of the well-known complex 

differential operators, whose higher-order 

boundary value problems have not received 

adequate attention despite the importance 

of these problems. Therefore, we are moti-

vated to find explicit formulas for the pow-

ers of Beltrami operators in terms of Bell 

polynomials. Then, we use the results of this 

study to solve boundary value problems for 

higher-order differential operators includ-

ing powers of Beltrami operators as main 

parts. 

The manuscript is structured as follows. In 

Section 2, we find the Bell polynomials for 
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the Beltrami operator. In Section 3, we study 

an explicit formula for powers of the Beltra-

mi and the powers of a generalized Beltrami 

operator. An alternative induction proof for 

this explicit formula is given Section 4. Sec-

tion 5 is devoted to introduce an application 

of the Bell polynomial for the Beltrami oper-

ator. We establish a Beltrami- Faa di Bruno 

formula. Illustrative examples are given. Fi-

nally, some concluding remarks are given. 

2. The Bell polynomials for the Bel-

trami operator  

The importance of the Beltrami operator fol-

lows from the fact that the theory of Beltrami 

equations is related with various problems 

in analysis and geometry. For more infor-

mation one can refer to (Bojarski, 1988; 

Bojarski et al., 2013; Gutlyanskii et al., 2012; 

Katz et al., 2018; Pastukhova, 2017). Next, 

we establish the Bell polynomial for the Bel-

trami operator. 

Theorem 1. Let 𝑙 = 𝜌𝜕𝑧̅ + 𝑞𝜕𝑧 be the Beltrami 

operator. For a function 𝜔 = 𝜔(𝑧) there 

holds 

𝑒−𝝎(𝒛)𝑙𝑛𝑒𝝎                                                                        

= 𝐵𝑛,𝑙(𝜔𝑧 , 𝜔𝑧̅ , , … , 𝜔𝑧𝑛 , 𝜔𝑧𝑛−1𝑧̅ , … , 𝜔𝑧̅𝑛),                  (2.1) 

where 𝐵𝑛,𝑙 is the Bell polynomial for the Bel-

trami operator. 

Proof. Let 𝐵𝑛
𝑙 = 𝑒−𝝎(𝒛)𝑙𝑛𝑒𝝎(𝒛). We have to 

show that Bn
𝑙  are the required Bell polyno-

mials. For 𝑛 ≥ 1 we have 

𝐵𝑛+1
𝑙 = 𝑒−𝝎(𝒛)𝑙𝑛+1𝑒𝝎(𝒛) = 𝑒−𝝎(𝒛)𝑙𝑛[𝑙(𝑒𝜔(𝑧))]       

= 𝑒−𝝎(𝒛)𝑙𝑛[𝑒𝝎𝑙𝜔]                                     

= 𝑒−𝝎(𝒛) ∑ (
𝑛
𝑘

)

𝑛

𝑘=0

𝑙𝑘[(𝑙𝜔)]𝑙𝑛−𝑘[𝑒𝜔(𝑧)]  

= 𝑒−𝝎(𝒛) ∑ (
𝑛
𝑘

)

𝑛

𝑘=0

[(𝑙𝑘+1𝜔)](𝑙𝑛−𝑘𝑒𝜔(𝑧)) 

= ∑ (
𝑛
𝑘

)

𝑛

𝑘=0

[(𝑙𝑘+1𝜔)](𝑒−𝜔𝑙𝑛−𝑘𝑒𝜔(𝑧))     

= ∑ (
𝑛
𝑘

)

𝑛

𝑘=0

𝐵𝑛−𝑘
𝑙 [(𝑙𝑘+1𝜔)],                             (2.2) 

formally, we set  

𝐵0
𝑙 = 1.                                                   (2.2′) 

This show that 𝐵𝑛
𝑙 = 𝑒−𝝎(𝒛)𝑙𝑛𝑒𝝎(𝒛) are the Bell 

polynomials. This completes the proof. 

The non-commutative sequence 
𝐵𝑛

𝑙 = 𝑒−𝝎(𝒛)𝑙𝑛𝑒𝝎(𝒛), 𝑛 = 1, 2, … 

begins with 
𝐵0

𝑙 = 1, 𝐵1
𝑙 = 𝑙 𝜔,    𝐵2

𝑙 = 𝑙2𝜔 + (𝑙𝜔)2, 

𝐵3
𝑙 = 𝑙3𝜔 + 3𝑙𝜔𝑙2𝜔 + 2𝑙𝜔𝑙2𝜔 + (𝑙𝜔)3, 

𝐵4
𝑙 = 𝑙4𝜔 + 4𝑙𝜔𝑙3𝜔 + 3 (𝑙𝜔)2. 𝑙2𝜔 + 3(𝑙2𝜔)2

+ 3 𝑙𝜔 𝑙2𝜔 + (𝑙𝜔)4. 

For more explicit 

𝐵1
𝑙 = 𝜌𝜔𝑧̅ + 𝑞𝜔𝑧  

𝐵2
𝑙 = 𝜌2(𝜔𝑧̅)2 + 𝜌2𝜔𝑧̅𝑧̅ + 𝜌𝑞𝑧̅𝜔𝑧 + 2𝜌𝑞𝜔𝑧𝜔𝑧̅ 

   +2𝜌𝑞𝜔𝑧𝑧̅ + 𝑞𝑞𝑧𝜔𝑧 + 𝑞2(𝜔𝑧)2 + 𝑞2𝜔𝑧𝑧 

Let us apply multi-index formalism in order 

to present an explicit expression for the Bell 

polynomials. We collect integers 𝑗 ≥ 0, 𝑗2 ≥

0 , … , 𝑗𝑛 ≥ 0 to a multi-index 𝑗 = (𝑗1 , 𝑗2 , … , 𝑗𝑛), 

and we set  

𝑗! = 𝑗1! 𝑗2! … 𝑗𝑛! , |𝑗| = 𝑗1 + 𝑗2 + ⋯ +𝑗𝑛 , 

  ‖𝑗‖ = 𝑗1 + 2𝑗2 + ⋯ + 𝑛𝑗𝑛                                         

We have to start a technical result for formal 

powers series 

Lemma 1. (Rida, 1996) If 𝛼𝑚0 = 1 for 𝑚 =

1, 2, ⋯, then  

∏(∑ 𝛼𝑚𝑛𝑥𝑚𝑛

∞

𝑛=0

)

∞

𝑚=1

= ∑ Α𝑛𝑥𝑛

∞

𝑛=0

,                 (2.3) 

where 

Α0 = 1, Α𝑛 = ∑ 𝛼1𝑗1

 

‖𝑗‖=𝑛

𝛼2𝑗2
… 𝛼𝑛𝑗𝑛

 , 𝑛 ≥ 1, (2.4) 

that means, the sum in (2.4) runs through all 

non-negative integers 𝑗 = (𝑗1, 𝑗2 , … , 𝑗𝑛) such 

that ‖𝑗‖ = 𝑗1 + 2𝑗2 + ⋯ + 𝑛𝑗𝑛 = 𝑛.  

Thus, we can define a sequence of Bell pol-

ynomials. 

Definition 1.  The sequence of Bell polyno-

mials 

𝐵0 = 1, 𝐵𝑛 = 𝐵𝑛   (𝜔1, 𝜔2 , … , 𝜔𝑛(𝑛+3)
2

) , 𝑛 = 1,2, …, 
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in the (finitely many) variables 

𝜔1, 𝜔2 , … , 𝜔𝑛(𝑛+3)

2

, is defined through a gen-

erating function 

∑
𝐵𝑛

𝑛!
𝑥𝑛

∞

𝑛=0

= exp (∑
𝜔𝑛

𝑛!
𝑥𝑛

∞

𝑛=1

). 

Consequentially, an explicit expression for 

the Bell polynomial can be established. 

Theorem 2. The  𝑛𝑡ℎ Bell polynomial is ex-

plicitly given by   

𝐵0 = 1, 𝐵𝑛   (𝜔1 , 𝜔2, … , 𝜔𝑛(𝑛+3)
2

)

= ∑
𝑛!

𝑘!
(

𝜔1

1!
)

𝑘1

 (
𝜔2

2!
)

𝑘2

… (

𝜔𝑛(𝑛+3)
2

𝑛!
)

𝑘𝑛 

‖𝑘‖=𝑛

for 𝑛 ≥ 1. 

𝐵0 = 1. 

For 𝑚 =
𝑛(𝑛+3)

2
 , 𝑚 ≥ 1 then  

 𝐵𝑚   (𝜔1 , 𝜔2, … , 𝜔𝑚)

= ∑
𝑚!

𝑘!
(

𝜔1

1!
)

𝑘1

 (
𝜔2

2!
)

𝑘2

… (
𝜔𝑚

𝑚!
)

𝑘𝑚
 

‖𝑘‖=𝑚

 

Proof. We apply the functional relation in 

Lemma 1 

∑
𝐵𝑛

𝑛!
𝑥𝑛 = exp

∞

𝑛=0

( ∑
𝜔𝑚

𝑚!
𝑥𝑚

∞

𝑚=1

) = ∏ exp (
𝜔𝑚

𝑚!
𝑥𝑚) 

∞

𝑚=1

    

         = ∏ (∑ 𝛼𝑚𝑛𝑥𝑚𝑛

∞

𝑛=0

)

∞

𝑚=1

= ∑ Α𝑛𝑥𝑛

∞

𝑛=0

         

where,  

𝛼𝑚𝑛 =
1

𝑛!
(

𝜔𝑚

𝑚!
)

𝑛

. 

Hence, with 𝑚 =
𝑛(𝑛+3)

2
 

 Α𝑚 = ∑ 𝛼1𝑗1

 

‖𝑗‖=𝑚

𝛼2𝑗2
… 𝛼𝑚𝑗𝑚

                               

= ∑
1

𝑗1! 𝑗2! … 𝑗𝑚!

 

‖𝑗‖=𝑚

(
𝜔1

1!
)

𝑗1

 (
𝜔2

2!
)

𝑗2

… (
𝜔𝑚

𝑚!
)

𝑗𝑚

 

        = ∑
1

𝑗!

 

‖𝑗‖=𝑚

(
𝜔1

1!
)

𝑗1

 (
𝜔2

2!
)

𝑗2

… (
𝜔𝑚

𝑚!
)

𝑗𝑚

. 

Comparison of the coefficients of the powers 

of 𝑧 gives the result. 

Now, we are going to establish the Bell 

polynomial for the Beltrami operator. Let   

𝜔 = 𝜑(𝑢) , 𝑢 = 𝑢(𝑧, 𝑧̅).The 𝑙𝑛𝜔 for all 𝑛 ≥ 1 

can be obtained in terms of the deriva-

tives of 𝑢, that are 𝑙𝑢 , 𝑙2𝑢, … , 𝑙𝑛𝑢 as follows.  

𝑙𝜔 = 𝜔𝑧̅ + 𝑞𝜔𝑧 = 𝜑′𝑢𝑧̅ + 𝑞𝜑′𝑢𝑧 = 𝜑′. 𝑙𝑢, 

𝑙2𝜔 = 𝑙[𝜔𝑧̅ + 𝑞𝜔𝑧] = 𝜕𝑧̅[𝜑′. 𝑙𝑢] + 𝑞𝜕𝑧[𝜑′. 𝑙𝑢] 

= 𝜑′′(𝑙𝑢)2 + 𝜑′𝑙2𝑢,                                

𝑙3𝜔 = 𝜑′′′(𝑙𝑢)2. 𝑙𝑢 + 2𝜑′′(𝑙𝑢). (𝑙2𝑢)             

+ 𝜑′′𝑙2𝑢. 𝑙𝑢 + 𝜑′𝑙3𝑢 

      = 𝜑′′′(𝑙𝑢)3 + 3𝜑′′(𝑙𝑢)(𝑙2𝑢) + 𝜑′𝑙3
𝑢, 

𝑙4𝜔 = 𝜑′′′′ . 𝑙𝑢 + 3𝜑′′′(𝑙𝑢). (𝑙2𝑢)                  

+3𝜑′′′𝑙𝑢. 𝑙2𝑢. 𝑙𝑢 3𝜑′′𝑙2𝑢. 𝑙2𝑢 

                +3𝜑′′𝑙𝑢. 𝑙3𝑢 + 𝜑′′  𝑙3𝑢. 𝑙𝑢 + 𝜑′ 𝑙4
𝑢,    

 = 𝜑′′′′(𝑙𝑢)4 + 3𝜑′′′(𝑙𝑢). (𝑙2𝑢)    

   +3𝜑′′′(𝑙𝑢)2. 𝑙2𝑢 3𝜑′′(𝑙2𝑢)2 

   +4𝜑′′𝑙𝑢. 𝑙3𝑢𝜑′ 𝑙4𝑢.                 

Continuing this process, we obtain the fol-

lowing iterated chain rule  

𝑙𝑛𝜔 = ∑ 𝜑(𝑑)(𝑢)𝐵𝑛,𝑘(𝑙𝑢 , 𝑙2𝑢, … , 𝑙𝑛𝑢)

𝑛

𝑘=1

. 

The following theorem gives an explicit 

formula for 𝐵𝑛,𝑘(𝑙𝑢 , 𝑙2𝑢, … , 𝑙𝑛𝑢). 

Theorem 3. There holds  

𝐵𝑛,𝑗 = ∑ (
𝑛 − 1

𝑛2
) (

𝑛2 − 1
𝑛3

) … (
𝑛𝑗−1 − 1

𝑛𝑗
) ×

𝑛

𝑛2,…,𝑛𝑗=1

 

× 𝑙𝑛𝑗𝜔 𝑙𝑛𝑗−1−𝑛𝑗  𝜔 … 𝑙𝑛2−𝑛3  𝜔 𝑙𝑛−𝑛2  𝜔  

for 𝑛 ≥ 𝑗 ≥ 2  and 𝐵0 = 1 , 𝐵1 = 𝑙𝜔. 

Proof. Let us rewrite (2.2) in the form 

𝐵𝑛 =  𝑙𝑛𝜔 + ∑ (
𝑛 − 1

𝑗1
)

𝑛−1

𝑗1=1

 𝐵𝑗1
[𝑙𝑛−𝑗1𝜔]. 

Here we insert  

𝐵𝑗1
= 𝑙𝑗1𝜔 + ∑ (

𝑗1 − 1
𝑗2

)

𝑗1−1

𝑗2=1

 𝐵𝑗2
[𝑙𝑗1−𝑗2𝜔],    

𝐵𝑛 = 𝑙𝑛𝜔 + ∑ (
𝑛 − 1

𝑗1
)

𝑛−1

𝑗1=1

𝑙𝑗1𝜔𝑙𝑛−𝑗1𝜔             
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 + ∑ ∑ (
𝑛 − 1

𝑗1
) (

𝑗1 − 1
𝑗2

)

𝑗1−1

𝑗2=1

 𝐵𝑗2
[𝑙𝑗1−𝑗2𝜔][𝑙𝑛−𝑗1𝜔].

𝑛−1

𝑗1=1

 

𝐵𝑗2
= 𝑙𝑗2𝜔 + ∑ (

𝑗2 − 1
𝑗3

)

𝑗2−1

𝑗3=1

 𝐵𝑗3
[𝑙𝑗2−𝑗3𝜔].      

Then,  

𝐵𝑛 = 𝑙𝑛𝜔 + ∑ (
𝑛 − 1

𝑗1
)

𝑛−1

𝑗1=1

𝑙𝑗1𝜔𝑙𝑛−𝑗1𝜔   

       + ∑ ∑ ∑ (
𝑛 − 1

𝑗1
) (

𝑗1 − 1
𝑗2

)

𝑗2−1

𝑗3=1

𝑗1−1

𝑗2=1

𝑛−1

𝑗1=1

(
𝑗2 − 1

𝑗3
) 

  × 𝐵𝑗3
[𝑙𝑗2−𝑗3𝜔][𝑙𝑗1−𝑗2𝜔𝑙𝑛−𝑗1𝜔] 

After the 𝑘𝑑-step there are summation indi-

ces 𝑗1, 𝑗2, … , 𝑗𝑘 such that 

𝑛 > 𝑗1 > 𝑗2 > ⋯ > 𝑗𝑘 ≥ 1,  

then we get, 

𝐵𝑛 = 𝑙𝑛𝜔 + ∑ (
𝑛 − 1

𝑗1
)

𝑛−1

𝑗1=1

𝑙𝑗1 𝜔𝑙𝑛−𝑗1𝜔            

+ ∑ ∑ (
𝑛 − 1

𝑗1
) (

𝑗1 − 1
𝑗2

)

𝑗1−1

𝑗2=1

 𝑙𝑗2𝜔 𝑙𝑗1−𝑗2𝜔 𝑙𝑛−𝑗1𝜔 + ⋯  

𝑛−1

𝑗1=1

 

+ ∑ ∑ … ∑ (
𝑛 − 1

𝑗1
) (

𝑗1 − 1
𝑗2

)

𝑗𝑘−1−1

𝑗𝑘=1

𝑗1−1

𝑗2=1

𝑛−1

𝑗1=1

… (
𝑗𝑘−1 − 1

𝑗𝑘
) 

× 𝑙𝑗𝑘𝜔 𝑙𝑗𝑘−1−𝑗𝑘𝜔 … 𝑙𝑛−𝑗1𝜔

+ ∑ ∑ … ∑ (
𝑛 − 1

𝑗1
) (

𝑗1 − 1
𝑗2

)

𝑗𝑘−1

𝑗𝑘+1=1

𝑗1−1

𝑗2=1

𝑛−1

𝑗1=1

… (
𝑗𝑘 − 1
𝑗𝑘+1

)   

× 𝐵𝑗𝑘+1
[𝑙𝑗𝑘+1−𝑗𝑘𝜔] … [𝑙𝑗1−𝑗2𝜔𝑙𝑛−𝑗1𝜔]         (2.5), 

The process stop at 𝑗 = 𝑛 − 1 where  

𝑗1 = 𝑛 − 1, 𝑗2 = 𝑛 − 2, … , 𝑗𝑛−1 = 1, 

and 𝐵1 = 𝜌𝜔𝑧̅ + 𝑞𝜔𝑧 = 𝑙𝜔 .  

The expression for 𝐵𝑛 appears properly de-

composed into its homogeneous parts 𝐵𝑛,𝑘 

(Feng et al., 2019; Feng et al., 2020; Schim-

ming & Rida, 1996). 

In the final result, we rename the summation 

indices and let the formally run 

through 1,2, … , 𝑛. Actually, we have in (1.9)  

𝑛 > 𝑗1 > 𝑗2 > ⋯ > 𝑗𝑘−1 ≥ 1 , 

Since for other values at least one binomial 

coefficient vanishes. If 𝑗 = 2 then we inter-

pret 𝑗1 = 𝑛. 

In case of noncommutativity, it makes a dif-

ference when we replace (2.2), (2.2′) by  

𝐵0
∗ = 1,   𝐵𝑛+1

∗ ≔ ∑ (
𝑛
𝑗 )

𝑛

𝑗=0

[𝑙𝑗+1𝜔]𝐵𝑛−𝑗
∗ . 

Let us call the unique solutions 

𝐵𝑛
∗ = 𝐵𝑛

∗ (𝜔1, 𝜔2 , … , 𝜔𝑛(𝑛+3)
2

) , (𝑛 = 0,1,2, … ) 

the dual (noncommutative) Bell polynomi-

als. It is easy to see that  

𝐵𝑛
∗ ≔ ∑ 𝐵𝑛,𝑘

∗

𝑛

𝑘=1

,                                               (2.6) 

with 

𝐵𝑛,𝑘
∗ = ∑ (

𝑛 − 1
𝑛2

) (
𝑛2 − 1

𝑛3
) … (

𝑛𝑘−1 − 1
𝑛𝑘

) ×

𝑛

𝑛2,…,𝑛𝑘=1

 

× 𝑙𝑛−𝑛2  𝜔𝑙𝑛2−𝑛3  𝜔 … 𝑙𝑛𝑘−1−𝑛𝑘 𝜔𝑙𝑛𝑘𝜔 . 

3. Formulas of powers of a general-

ized Beltrami operator  

3.1. An explicit formula for the powers of 

a generalized Beltrami  

In this section, we will consider a general-

ized Beltrami  

𝐿 = 𝜌𝜔𝑧̅ + 𝑞𝜔𝑧 + 𝜇  

i.e. 𝐿 = 𝑙 + 𝜇 , 𝜇 = 𝜇(𝑧, 𝑧̅) is differentiable func-

tion. Then, 

𝐿𝑛𝑓 = 𝑙𝑛𝑓 

+ ∑ ∑ 𝑙𝑛0(𝜇𝑙𝑛1(𝜇𝑙𝑛2 … (𝜇𝑙𝑛𝑝𝑓)))

 

𝑛0,𝑛1,…,𝑛𝑝
𝑛1+𝑛2+⋯+𝑛𝑝=𝑛−𝑝

𝑛

𝑝=1

 

Let 𝑧1 = 𝑙𝑛1 (𝜇𝑙𝑛2(… (𝜇𝑙𝑛𝑝𝑓))). Then, 

𝑙𝑛0[𝜇𝑧1] = ∑ (
𝑛0

𝑘1
)

𝑛0

𝑘1=0

𝑙𝑘1𝜇𝑙𝑛0−𝑘1𝑧1,    𝑙𝑛0−𝑘1𝑧1 

= 𝑙𝑛0−𝑘1 [𝑙𝑛1𝜇𝑧2],                        

with 𝑧2 = 𝑙𝑛2 (𝜇𝑙𝑛3(… (𝜇𝑙𝑛𝑝𝑓))). 
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If 𝜌 = const.,  

 𝑙𝑛0−𝑘1𝑧1 = 𝑙𝑛0+𝑛1−𝑘1[𝜇𝑧2]

= ∑ (
𝑛0 + 𝑛1 − 𝑘1

𝑘2
)

𝑛0+𝑛1−𝑘1

𝑘2=0

𝑙𝑘2𝜇𝑙𝑛0+𝑛1−𝑘1−𝑘2𝑧2 

= ∑ ∑ (
n0 + n1 − k1

k2
)

1

l1=0

(
1
j1

)

n0+n1−k1

k2=0

×                                 

× lk2μj1 . ln0+n1−k1−k2μ2−j1z2,                  (3.1) 

𝑙𝑛0+𝑛1−𝑘1−𝑘2𝑢2−𝑗1𝑧2 = 𝑙𝑛0+𝑛1+𝑛2−𝑘1−𝑘2𝑢2−𝑗1[𝑙𝑛2𝜇𝑧3] 

        = ∑ (
n0 + n1 + n2 − k1 − k2

k3
)

n0+n1 +n2−k1−k2

k3=0

× 

                        × lk3μln0+n1+n2−k1−k2−k3 z3. 

By substituting in (3.1), we get 

𝑙𝑛0−𝑘1𝑧1

= ∑ ∑ (
1
𝑗1

) (
𝑛0 + 𝑛1 − 𝑘1

𝑘2
)

1

𝑗1=0

𝑙𝑘2𝜇 𝑗1. 𝜇2−𝑗1

𝑛0+𝑛1−𝑘1

𝑘2=0

 

× ∑ ∑ (
2 − j1

j2
)

2−j1

j2=0

(
n0 + n1 + n2 − k1 − k2

k3
)

n0+n1+n2−k1−k2

k3=0

 

                                        × lk3μln0+n1+n2−k1−k2−k3μz3 

and hence, 

𝐿𝑛𝑓 = 𝑙𝑛𝑓                                                                    

+ ∑ ∑ … ∑ ∑ ∑ … ∑ (
𝑛0

𝑘1
)

𝑝−𝑗1−𝑗2−⋯−𝑗𝑝−1

𝑗𝑝=0

2−𝑗1

𝑗2=0

1

𝑗1=0

𝑛0+𝑛1+⋯+𝑛𝑝−𝑘1−⋯−𝑘𝑝−1

𝑘𝑝=0

𝑛0+𝑛1−𝑘1

𝑘2=0

𝑛0

𝑘1=0

× 

× (
𝑛0 + 𝑛1 + ⋯ + 𝑛𝑝 − 𝑘1 − ⋯ − 𝑘𝑝−1

𝑘𝑝
) (

1
𝑗1

) (
2 − 𝑗1

𝑗2
) … (

𝑝 − 𝑗1 − 𝑗2 − ⋯ −𝑗𝑝−1

𝑗𝑝
) 

× (𝑙𝑘1𝜇)(𝑙𝑘2𝜇 𝑗1) … (𝑙𝑘𝑝𝜇 𝑗𝑝−1) 

(𝑙𝑛0+𝑛1+⋯+𝑛𝑝−𝑘1−⋯−𝑘𝑝−1𝜇𝑝−𝑗1−𝑗2−⋯−𝑗𝑝−1)𝑓, 
 

which can be written as 
 

𝐿𝑛𝑓 = 𝑙𝑛𝑓 

+ ∑ ∑ 𝐶
𝑘1,𝑘2,…,𝑘𝑝:𝑗1−𝑗2−⋯−𝑗𝑝

𝑛0,𝑛1,…,𝑛𝑝

 

𝑗1,𝑗2,⋯ ,𝑗𝑝≥0

𝑗1+𝑗2+⋯+𝑗𝑝=𝑝

 

𝑘1,𝑘2,𝑘3,…,𝑘𝑝≥0

𝑘1+𝑘2+⋯+𝑘𝑝=𝑛−𝑝

 

× (lk1μ)(lk2μj1) … (lkpμjp−1) 

× (ln0+n1+⋯+np−k1−⋯−kp−1μp−j1−j2−⋯−jp−1)f, 

where, 

𝐶
𝑘1,𝑘2,…,𝑘𝑝:𝑗1,𝑗2,…,𝑗𝑝

𝑛0,𝑛1,…,𝑛𝑝

= (
𝑛0

𝑘1
) (

𝑛0 + 𝑛1 + ⋯ + 𝑛𝑝 − 𝑘1 − ⋯ − 𝑘𝑝−1

𝑘𝑝
) × 

                                

× (
1
𝑗1

) (
2 − 𝑗1

𝑗2
) … (

𝑝 − 𝑗1 − 𝑗2 − ⋯ −𝑗𝑝−1

𝑗𝑝
). 

3.2. Alternative formula for powers of a 

generalized Beltrami operator 

Theorem 4. The 𝑛𝑡ℎ- power (𝑛 ≥ 2 ) of the 

generalized Beltrami operator 𝐿 is given as  

𝐿𝑛 = 𝑙𝑛 + ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

𝐵𝑘,𝑙[𝜇0, 𝜇1, … , 𝜇𝑛],          (3.2) 

where 𝜇𝑘 = 𝑙𝑘𝜇, with 𝑙 = 𝜌𝜕𝑧̅ + 𝑞𝜕𝑧 is the Bel-

trami operator. 

Proof. The obvious product rule  

𝐿[𝜔1𝜔2] = [𝑙 + 𝜇][𝜔1𝜔2]          

= 𝑙[𝜔1𝜔2] + 𝜇𝜔1𝜔2                               

 = 𝑙[𝜔1]𝜔2 + 𝜔1𝑙[𝜔2] + 𝜇𝜔1𝜔2             

= [𝑙 + 𝜇][𝜔1]𝜔2 + 𝜔1𝑙[𝜔2]                  

= 𝐿[𝜔1]𝜔2 + 𝜔1𝑙[𝜔2],                            

𝐿2[𝜔1𝜔2] = 𝐿(𝐿[𝜔1𝜔2])      

= 𝐿[𝐿[𝜔1]𝜔2 + 𝜔1𝑙[𝜔2]]                  

 = 𝐿(𝐿[𝜔1]𝜔2) + 𝐿(𝜔1𝑙[𝜔2])            

      = 𝐿2[𝜔1]𝜔2 + 2𝐿[𝜔1]𝑙[𝜔1] + 𝜔1𝑙2[𝜔2], 

   = ∑ (
2
𝑘

) 𝐿𝑘[𝜔1]

2

𝑘=0

𝑙2−𝑘[𝜔2].                   

Generally, we have 

𝐿𝑛[𝜔1𝜔2] = ∑ (
𝑛
𝑘

) [𝐿𝑘𝜔1]

𝑛

𝑘=0

𝑙𝑛−𝑘[𝜔2].            (3.3) 

Specializing here 𝜔1 = 1, 𝜔2 = 𝜇, we obtain 

the recursion 

𝐿𝑛𝜇 = ∑ (
𝑛
𝑘

) [𝐿𝑘1]𝑛
𝑘=0 𝑙𝑛−𝑘[𝜇].                     (3.4)  

Thus, 𝐿𝑛𝜇 is known for every 𝑛 if  𝐿𝑘1 is 

known for every 𝑘. Since 𝜇 = 𝐿[1], then 

𝐿𝑛+1[1] = ∑ (
𝑛
𝑘

) 𝐿𝑘[1]

𝑛

𝑘=0

𝑙𝑛−𝑘[𝜇],                 (3.5) 

L01 = 1.                                                   (3.5′) 
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Comparing (3.5), (3.5′) with (2.2), (2.2′), 

gives  

𝐿𝑘1 = 𝐵𝑘
𝑙 [𝜇, 𝑙𝜇, … , 𝑙𝑛𝜇] = 𝐵𝑘[𝜇0, 𝜇1, … , 𝜇𝑛],   

𝜇𝑘 = 𝑙𝑘𝜇.  

4. Induction proof of Theorem 4 
The basic results in Theorems 3 and 4 can 

be proven by mathematical induction. To 

avoid the monotony of repetition, we will 

present the induction proof of Theorem 4. 

For n = 1, L1 = L = l + u. This can be ex-

pressed as: 

l1 + ∑   (
1

k
) B{1,k} 

1

k=1

= l + B{1,1} = l + 1. u, 

where B{1,1} = u. Thus L1 = l + u =  l1 + B{1,1}. 

This means that the base case holds. 

Now, for n = k assume that 

Lk =  ln + ∑   (
k

j
) B{k,j} 

k

j=1

 

For n = k + 1, Lk+1 = L(Lk). Using the induc-

tive hypothesis, one gets 

Lk+1 = L (lk + ∑   (
k

j
) B{k,j}  

k

j=1

), 

This can be rewritten as 

Lk+1 = L(lk) + L (∑   (
k

j
) B{k,j} 

k

j=1

).           (4.1) 

Using the linearity of L, applying L to lk, 

gives 

L(lk) = l(lk) + u(lk). 

The term u(lk) is simply, lk. While the 

term l(lk) can be computed as follows: 

l(lk) = ∂z̅(lk) + q ∂z(lk). 

Now consider the contribution from the sec-

ond term in (4.1) 

L (∑   (
k

j
) B{k,j} 

k

j=1

) = ∑   (
k

j
) L(B{k,j}) 

k

j=1

 

with LB{k,j} =  lB{k,j} + uB{k,j}. 

Thus, collecting terms of (4.1), we have 

Lk+1 = l(lk) + u(lk) + ∑   (
k

j
) (lB{k,j} + uB{k,j}).

k

j=1

 

We can group the terms involving l to get 

Lk+1 = lk+1 + ∑   (
k

j
) l(B{k,j}) 

k

j=1

 

              + ∑   (
k

j
) uB{k,j} 

k

j=1

+ ulk.                        (4.2) 

By the properties of Bell polynomials, we 

recognize the contributions of l(B{k,j}).  

We can express  

l(B{k,j}) = ∑   (
j

m
) B{k+1,m} 

j

m=0

 

leading to the sum: 

∑   (
k

j
) l(B{k,j}) = ∑ (∑ (

k

j
) (

j

m
)

k

j=m

k

m=0

 

k

j=1

)B{k+1,m}. 

The combinatorial identity gives 

∑ (
k

j
) (

j

m
)

k

j=m

= (
k + 1

m + 1
). 

Finally, putting everything together, 

Eq.(4.2) is of the form 

Lk+1 = lk+1 + ∑ (
k + 1

m
)

k

j=m

B{k+1,m}. 

That is, the induction hypothesis holds 

for n = k + 1. Thus, we conclude that: 

Ln = ln + ∑ (
n

k
)

n

k=1

B{n,k},   n ≥ 1. 

 This completes the proof of Theorem 4. 

 

5. Applications 

Here, we introduce an application for the 

Bell polynomial for the Beltrami operator. It 
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generalizes the Faa' di Bruno formula. It is 

diverse for the obtained formula to be 

called a Beltrami- Faa' di Bruno formula. 

Moreover, some illustrative examples are 

given.  

Let g = g(z, z) and f(z) be complex valued 

functions. Apply ln to the composition func-

tion f ∘ g, leads to the Beltrami- Faa' di Bruno 

formula: 

ln(f ∘ g(z, z))

= ∑ f (j)(g(z, z‾))Bn,j(gz, gz‾ , gzz, gzz‾ , gz‾z‾ , … )

n

j=0

 , 

 

where 
 

 gz =
∂g

∂z
, gz =

∂g

∂z
 , gzz =

∂2g

∂z2  , gzz =
∂2g

∂z ∂z
 ,  

and gz z =
∂2g

∂z
2. 

Each term in the sum accounts for the con-

tributions from the derivatives of f  evaluat-

ed at g and the corresponding Bell polyno-

mial of the derivatives of g. 

5.1. Example 1 

If g = e(zz) and f =
1

(z+1)
, one can obtain 

ln(f ∘ g) = ∑
(−1)jj!

(ezz‾ + 1)j+1
Bn,j(z‾ezz‾ , zezz‾ , z‾2ezz‾ , ezz‾

n

j=0

+ zz‾ezz‾ , z2ezz‾ , … )  

with 

Bn,j(z‾ezz‾ , zezz‾ , z‾2ezz‾ , ezz‾ + zz‾ezz‾ , z2ezz‾ , … )

= enzz̅  ∑
n!

k1! k2! ⋯ kn!
 ∏  

j

i=1

xi

ki

n

k1+k2+⋯+kn=n

 

where 

 x1 = z‾,   x2 = z,   x3 = z‾2,   x4 = 1 + zz‾, x5 = z2, ⋯ 

5.2. Example 2 An expression for  ln(f ∘

g) where f(z) =
1

z
  and g(z) = ln(z + 1) using 

Bell polynomials can be calculated as 

 ln(f ∘ g(z))

= ∑ ((−1)j
(j − 1)!

(ln(z + 1))j
) Bn,j (

1

z + 1
, −

1

(z + 1)2
, … )

n

j=0

   

with 

Bn,j (
1

z + 1
, −

1

(z + 1)2
, −

1

(z + 1)3
, … )

= ∑  
k1+k2+⋯+kj=n

n! (−1)k2+k3+⋯+kj

k1! k2! ⋯ kj! (z + 1)k1+2k2+3k3+⋯+jkj
 

 

Conclusion 

In this study, we have introduced general-

ized Bell polynomials and investigated basic 

properties of these polynomials. We have 

obtained Bell polynomials for the Beltrami 

operator. Also, we got explicit formulas for 

the powers of the Beltrami operator and a 

generalized Beltrami operator. We intro-

duced an application of the obtained Bell 

polynomial for the Beltrami operator, name-

ly, a Beltrami- Faà di Bruno formula had 

been established. Illustrative examples 

were given. Further, the obtained explicit 

formulas for the powers of the Beltrami op-

erator and generalized Beltrami operators 

can help in tackling new application in the 

conformal mapping theory and boundary 

value problem for elliptic complex differen-

tial operators of higher order involving Bel-

trami and generalized Beltrami operators of 

higher orders. That we are going to do in 

future work. 
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