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Article info              Abstract 

 
One effective technique for finding some exact traveling 

wave solutions of nonlinear partial differential equations 

(NPDEs) is the exp(−Φ(𝜁)) expansion method. In this pa-

per, the exact traveling wave solutions for the nonlinear 

coupled Whitham-Broer-Kaup equation and the new cou-

pled Korteweg-de Vries (KdV) equation are obtained by 

applying the exp(−Φ(𝜁)) expansion method. The numer-

ical results of these solutions by using Maple have been 

presented graphically and discussed. The obtained trav-

eling wave solutions include exponential functions, hy-

perbolic functions, trigonometric functions, and rational 

functions. Moreover, 3D graphics of solutions like the 

bell-shaped soliton solution, kink-type, periodic travel-

ing waves, singular kink-type, singular cuspon type, as 

well as plane-wave solutions are presented to illustrate 

the dynamics of the equations. Comparing the results of 

the proposed method with the results of the homotopy 

analysis method shows that the proposed method is a 

strong and attractive method for solving systems of non-

linear partial differential equations. The results demon-

strated the efficiency and simplicity of this method in ex-

tracting these exact solutions. The effectiveness of this 

method in solving nonlinear coupled partial differential 

equations that arise in mathematical physics and engi-

neering has been shown. 
 

 

1. Introduction  

Recently, nonlinear evolution equations 
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(NLEEs) have played a significant role in in-

terpreting many nonlinear phenomena. 

Nonlinear phenomena emerge in a variety 

DOI: 10.21608/svuijbs.2025.322864.1006 

Received 27 October 2024  
Revised 1 February 2025  
Accepted 25 February 2025 
Available online 18 March 2025 

Keywords: 
Exp(−Φ(𝜁)) expansion method, 
Coupled Whitham-Broer-Kaup 
equation, New coupled KdV  
equation, Solitary wave solutions, 
Traveling wave solutions. 

SVU-International Journal of Basic Sciences 

Journal homepage: https://svuijbs.journals.ekb.eg/ 



38 Abu-Alhamed and Elboree                                                                  SVU-IJBS, VOL.2, NO. 1, (2025), 37‒47      

of scientific applications, such as plasma 

physics, solid-state heat flow, wave propa-

gation phenomena, quantum mechanics, flu-

id mechanics, shallow water wave propaga-

tion, and so on. 

Through exact solutions, we can better un-

derstand and explain the phenomena mod-

eled by NLEEs. Great efforts have been 

made to find exact solutions to such nonlin-

ear equations by many mathematicians and 

physicists. Many effective techniques have 

been developed to generate more new ide-

as. One of the most important of these tech-

niques is the use of wave variable transfor-

mation to transform NPDE to ordinary differ-

ential equation (ODE) to obtain the solitons. 

In reality, no single method can be utilized 

for all kinds of nonlinear evolution equa-

tions. There are various techniques for soli-

ton solutions, including inverse scattering 

method (Ablowitz & Clarkson, 1991), 

Bäcklund and Darboux transformation 

method (Rogers & Schief, 2002), homotopy 

perturbation method (He, 1998; Mohyud & 

Noor, 2009; Rashidi  et al., 2008; Abbas-

bandy, 2007 ), first integral method (Taghi-

zadeh et al., 2012), variational iteration 

method (Yusufoğlu, 2008), Riccati-Bernoulli 

sub-ODE method (Yang et al., 2015), Jacobi 

elliptic function method (Yan, 2003), tanh-

sech method (Wazwaz, 2005), (G’/G)-

expansion method (Wang et al., 2008; 

Zhang, 2009), Hirota’s method (Hirota, 

1971), homogeneous balance method (M.L, 

1995; Wang & Zhou, 1996; Rady et al., 2010; 

Rady et al., 2009; Khalfallah, 2009), 

exp(−𝜙(𝜁)) expansion method (Akbar & 

Norhashidah, 2014; Hafez et al., 2014; El-

boree, 2021), differential transform method 

(DTM) (Chen & Ho, 1999; Fatoorehchia & 

Abolghasemi, 2014;  Fatoorehchi & Abol-

ghasemi, 2013; Kurnaz et al.,  2005)and so 

on.  

A solitary wave with elastic scattering is 

called a soliton. Solitons maintain their 

forms and velocity after interacting with one 

another. Solitary waves are described by 

the KdV equation, while shock waves are 

governed by the KdV-Burgers equation. A 

delicate balance between dispersive and 

nonlinear effects in the medium leads to sol-

itons. Solitons take the form of a kink or the 

sech2 bell shape.  

In previous studies, the exp(−Φ(𝜁)) expan-

sion method was not applied to the afore-

mentioned equations, but other methods 

were considered, including the homotopy 

analysis method. Through the homotopy 

analysis method, S. Abbasbandy (Abbas-

bandy, 2007) obtained traveling wave solu-

tions for the coupled KdV equation. Also, M. 

M. Rashidi, D. D. Ganji, and S. Dinarvand 

(Rashidi et al., 2008) derived traveling wave 

solutions for the coupled Whitham-Broer-

Kaup equations. The results of the homotopy 

analysis method and the suggested method 

were compared. According to the results, 

one of the advantages of the exp(−Φ(𝜁)) 

expansion method is that it offers new exact 

solutions for the traveling wave along with 

additional free parameters. Soliton, periodic 

traveling wave solution, kink, and cuspons 

are obtained when the relevant physical pa-

rameters are given their respective values. 

With Maple, the algebraic manipulation of 

the suggested scheme is much simpler than 

previous methods. 

Some new analytical solutions have been 

provided by exp(−Φ(𝜁)) expansion method 

instead of other ways. Thus, the objective of 

this paper is to acquire the exact traveling 

wave solutions of the coupled Whitham-

Broer-Kaup equation and the new coupled 

KdV equation using exp(−Φ(𝜁)) expansion 

method.  

The arrangement of the article is as follows: 

Section 2 describes the exp(−Φ(𝜁)) expan-

sion method. The traveling wave solutions of 

the coupled Whitham-Broer-Kaup equation 

and the new coupled KdV equation are ob-

tained in Section 3. Section 4 displays the 

physical explanations and graphical repre-

sentations of the solutions. Section 5 pre-

sents the comparison. Finally, conclusions 

are drawn in the last section.  
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2. The 𝐞𝐱𝐩(−𝚽(𝛇)) expansion method 

This section describes the exp(−Φ(𝜁)) ex-

pansion method to obtain traveling wave 

solutions of NLEEs. The NPDE’s general 

form can be expressed as follows:  

R(𝑣, 𝑣𝑡 , 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 , 𝑣𝑥𝑥 , 𝑣𝑦𝑦 , 𝑣𝑧, 𝑣𝑡𝑡 , 𝑣𝑡𝑥, 𝑣𝑡𝑦 , 𝑣𝑡𝑧, … )  

= 0      (1) 

where 𝑣(𝑥, 𝑦, 𝑧, 𝑡) is an unknown function, R 

is a polynomial in 𝑣 (𝑥, 𝑦, 𝑧, 𝑡) and its deriva-

tives. Here are the basic steps of the pro-

posed technique: 

Step 1: We combine the real variables 𝑥, 𝑦, 

𝑧 and 𝑡by a complex variable 𝜁 is as follows: 

     𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑉(𝜁), 𝜁 = 𝑥 + 𝑦 + 𝑧 − 𝑐𝑡  (2) 

where c is the wave speed. Using the travel-

ing wave transformation (2), we obtain the 

ODE of Eq. (1) for V = V(ζ)  

     𝑅(𝑉, 𝑉′, 𝑉′′, 𝑉′′′, . . . . . . ) = 0                             (3) 

where R is a polynomial of 𝑉(𝜁) and its de-

rivatives and the superscripts indicate the 

ordinary derivatives with respect to 𝜁. 

Step 2: According to the exp(−Φ(𝜁)) expan-

sion method, the following is a formula for 

the traveling wave solution of Eq. (3):  

   𝑉(𝜁) = ∑𝑁
𝑗=0 𝑎𝑗exp(−Φ(𝜁))𝑗                        (4) 

where 𝑎𝑗 are constants to be determined 

later and Φ(𝜁) satisfies the subsequent ODE:  

   Φ′(𝜁) = exp(−Φ(𝜁)) + 𝜏exp(Φ(𝜁)) + 𝜅    (5) 

where τ and κ are arbitrary constants. It is 

worth noting that Eq. (5) has the subsequent 

generic solutions:  

Type 1: If 𝜏 ≠ 0 and 𝜅2 − 4𝜏 > 0 

      Φ(ζ) = ln (−
√κ2−4τtanh(√(κ2−4τ)

2
(D+ζ))+κ

2τ
)          (6)                                

Type 2: If 𝜏 ≠ 0 and 𝜅2 − 4𝜏 < 0, 

  Φ(𝜁) = ln (
√4𝜏−𝜅2tan(√(4𝜏−𝜅2)

2
(𝐷+𝜁))−𝜅

2𝜏
)         (7)                   

Type 3: If 𝜏 = 0, 𝜅 ≠ 0 and 𝜅2 − 4𝜏 > 0,  

    Φ(𝜁) = −ln (
𝜅

cosh(𝜅(𝐷+𝜁))+sinh(𝜅(𝐷+𝜁))−1
) 

                 = −ln (
𝜅

exp(𝜅(𝐷+𝜁))−1
)                           (8) 

Type 4: If 𝜏 ≠ 0, 𝜅 ≠ 0 and 𝜅2 − 4𝜏 = 0,  

      Φ(𝜁) = ln (−
2(𝜅(𝜁+𝐷)+2)

𝜅2(𝐷+𝜁)
)                              (9) 

Type 5: If 𝜏 = 0, 𝜅 = 0 and 𝜅2 − 4𝜏 = 0,  

      Φ(𝜁) = ln(𝜁 + 𝐷)                                          (10) 

 where D is an integration constant. 

Step 3: Obtaining the positive integer N re-

quires achieving a balance between the 

nonlinear terms of the highest order and the 

highest-order derivatives that appeared in 

Eq. (3).  

Step 4: By substituting Eq. (4) into Eq. (3) 

and utilizing (5), we will get a system of al-

gebraic equations by setting all the coeffi-

cients of exp(−Φ(𝜁)) to zero. We solve the 

obtained system to get the values of 𝑎𝑛, c, 𝜅, 

and 𝜏 through symbolic computation soft-

ware such as Maple.  

Step 5: Replacing values of these constants 

into Eq. (4) along with the general solutions 

of Eq. (5), we obtain the solution of Eq. (1). 

3. Application of the method 

In this part, we will apply the exp(−Φ(𝜁)) 

expansion method to get new traveling 

wave solutions for the nonlinear coupled 

Whitham-Broer-Kaup equation and the new 

coupled KdV equation, both of which repre-

sent significant NLEEs in mathematical phys-

ics and engineering.  
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A. The coupled Whitham-Broer-Kaup 

equation: Applying the exp(−Φ(ζ)) expan-

sion method, we can solve the coupled 

Whitham-Broer-Kaup equation presented by 

Whitham, Broer, and Kaup exactly. The 

equations describe the propagation of shal-

low water waves with different propagation 

relations. Let us consider the coupled 

Whitham-Broer-Kaup equation: 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑥 + 𝛽𝑢𝑥𝑥 = 0,   

                   𝑣𝑡 + (𝑢𝑣)𝑥 − 𝛽𝑣𝑥𝑥 + 𝛾𝑢𝑥𝑥𝑥 = 0    (11) 

Where 𝑢 = 𝑢 (𝑥, 𝑡) represents the horizontal 

velocity, 𝑣= 𝑣 (𝑥, 𝑡) is the height that devi-

ates from the equilibrium position of the liq-

uid, and β, γ are constants that represent 

different diffusion power. The traveling 

wave variable is employed  

𝑢(𝑥, 𝑡) = 𝑈(𝜁), 𝑣(𝑥, 𝑡) = 𝑉(𝜁), 𝜁 = 𝑥 − 𝑐𝑡    (12) 

Eq. (12) is reduces Eq. (11) into ODEs as 

follows:  

    −cU′ + UU′ + V′ + βU′′ = 0,                      (13) 

   −𝑐𝑉′ + [𝑈𝑉]′ − 𝛽𝑉′′ + 𝛾𝑈(3) = 0              (14) 

When Eqs. (13) and (14) are integrated with 

regard to ζ and considering the integration 

constant to be zero, yields  

   −𝑐𝑈 +
1

2
𝑈2 + 𝑉 + 𝛽𝑈′ = 0                            (15) 

   −𝑐𝑉 + 𝑈𝑉 − 𝛽𝑉′ + 𝛾𝑈′′ = 0                          (16) 

By applying the homogeneous balance be-

tween the highest order derivatives and 

nonlinear terms in Eqs. (15) and (16), we 

conclude that N = 1 in Eq. (15) and N = 2 in 

Eq. (16). The exp(−Φ(ζ)) expansion method 

enables us to use the solution as follows: 

 𝑈(𝜁) = 𝑎0 + 𝑎1exp(−Φ(𝜁))                                 (17) 

  𝑉(𝜁) = 𝑏0 + 𝑏1exp(−Φ(𝜁)) + (exp(−Φ(𝜁)))2   (18) 

 where aj and bj are constants to be deter-

mined. By substituting (17) and (18) into (15) 

and (16), then equating the coefficients of 

exp(−Φ(ζ)) to zero, we obtain a set of alge-

braic equations for the parameters a0, a1, b0, 

b1, τ, κ and β. Solving this system we get 

              𝛽 = 𝛽, 𝑐 = 𝑐, 𝑎0 = 𝑎0, 𝑎1 = 𝑎1, 

             𝑏0 = 𝛽𝑎1𝜏 + 𝑐𝑎0 −
1

2
𝑎0

2, 

            𝑏1 = 𝛽𝜅𝑎1 + 𝑐𝑎1 − 𝑎0𝑎1, 

           𝑏2 = 𝛽𝑎1 −
1

2
𝑎1  

2                                         (19)                                                         

where τ and κ are arbitrary constants. 

Utilizing Eqs. (17), (18), and (19), we ob-

tained the traveling wave solutions for the 

coupled Whitham-Broer-Kaup equation ac-

cording to the formulas Eqs. (6)-(10) as fol-

lows  

When τ ≠ 0 and κ2 − 4τ > 0, we have  

     𝑢1(𝑥, 𝑡) = 𝑎0  

−
2𝑎1𝜏

√𝜅2 − 4𝜏 tanh (
1
2 √2𝜅2 − 8𝜏(𝐷 + 𝑥 − 𝑐𝑡)) + 𝜅

 

(20) 

𝑣1(𝑥, 𝑡) = 𝑏0 

−
2𝑏1𝜏

√𝜅2 − 4𝜏 tanh (
1
2 √2𝜅2 − 8𝜏(𝐷 + 𝑥 − 𝑐𝑡)) + 𝜅

 

+
4𝑏2𝜏2

(√𝜅2 − 4𝜏tanh(
1
2 √2𝜅2 − 8𝜏(𝐷 + 𝑥 − 𝑐𝑡)) + 𝜅)2

 

 (21) 

When τ ≠ 0 and κ2 − 4τ < 0, we have  

   𝑢2(x, t) = a0 

+
2a1τ

√4τ − κ2tan(
1
2 √8τ − 2κ2(D + x − ct)) − κ

 

 (22) 

   𝑣2(𝑥, 𝑡) = b0 
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+
2b1τ

(√4τ − κ2tan(
1
2 √8τ − 2κ2(D + x − ct)) − κ

 

+
4b2τ2

(√4τ − κ2tan(
1
2 √8τ − 2κ2(D + x − ct)) − κ)2

 

                    (23) 

 When τ = 0, κ ≠ 0 and κ2 − 4τ > 0, we have  

      𝑢3(𝑥, 𝑡) = 𝑎0 +
𝑎1𝜅

exp(𝜅(𝐷 + 𝑥 − 𝑐𝑡)) − 1
 (24) 

     𝑣3(𝑥, 𝑡) = b0 +
b1κ

exp(κ(D + x − ct)) − 1
 

+
b2κ2

(exp(κ(D + x − ct)) − 1)2
 (25) 

When τ ≠ 0, κ ≠ 0 and κ2 − 4τ = 0, we have  

     𝑢4(𝑥, 𝑡) = 𝑎0 −
𝑎1𝜅2(𝐷 + 𝑥 − 𝑐𝑡)

2𝜅(𝐷 + 𝑥 − 𝑐𝑡) + 4
      (26) 

     𝑣4(𝑥, 𝑡) = 𝑏0 −
𝑏1𝜅2(𝐷 + 𝑥 − 𝑐𝑡)

2𝜅(𝐷 + 𝑥 − 𝑐𝑡) + 4
 

   +
𝑏2𝜅4(𝐷 + 𝑥 − 𝑐𝑡)2

(2𝜅(𝐷 + 𝑥 − 𝑐𝑡)) + 4)2
    (27) 

When τ = 0, κ = 0 and κ2 − 4τ = 0, we have  

𝑢5(𝑥, 𝑡) = 𝑎0 +
𝑎1

𝐷 + 𝑥 − 𝑐𝑡
                     (28) 

𝑣5(𝑥, 𝑡) = 𝑏0 +
𝑏1

𝐷 + 𝑥 − 𝑐𝑡
+

𝑏2

(𝐷 + 𝑥 − 𝑐𝑡)2
(29) 

where D is an integration constant. 

B. The new coupled KdV equation: The 

following part will introduce the exp(−Φ(ζ)) 

expansion method to obtain the exact solu-

tions of the new coupled KdV model equa-

tions that explain the interactions between 

two long waves with various dispersion rela-

tions. These equations are in the following 

form:  

   𝑢𝑡 +
1

4
𝑢𝑥𝑥𝑥 −

3

2
𝑢𝑢𝑥 −

3

4
(𝑣𝑤)𝑥 = 0, 

    𝑣𝑡 +
1

4
𝑣𝑥𝑥𝑥 −

3

2
(𝑢𝑣)𝑥 = 0, 

 𝑤𝑡 +
1

4
𝑤𝑥𝑥𝑥 −

3

2
(𝑢𝑤)𝑥 = 0                            (30) 

Now let us assume that the traveling wave 

transformation equation is  

𝑢(𝑥, 𝑡) = 𝑈(𝜁), 𝑣(𝑥, 𝑡) = 𝑉(𝜁), 

        𝑤(𝑥, 𝑡) = 𝑊(𝜁), 𝜁 = 𝑥 − 𝑐𝑡               (31)                         

Using traveling wave transformation, Eq. 

(30) is carried to an ODE  

    −𝑐𝑈′ +
1

4
𝑈(3) −

3

2
𝑈𝑈′ −

3

4
[𝑉𝑊]′ = 0,        (32) 

   −𝑐𝑉′ +
1

4
𝑉(3) −

3

2
[𝑈𝑉]′ = 0,                          (33) 

    −𝑐𝑊′ +
1

4
𝑊(3) −

3

2
[𝑈𝑊]′ = 0.                   (34) 

By integrating Eqs. (32), (33) and (34) with 

respect to ζ, and choosing the constant of 

integration as zero, we obtain  

    −𝑐𝑈 +
1

4
𝑈(2) −

3

4
𝑈2 −

3

4
𝑉𝑊 = 0,                (35) 

    −𝑐𝑉 +
1

4
𝑉(2) −

3

2
𝑈𝑉 = 0,                                (36) 

     −𝑐𝑊 +
1

4
𝑊(2) −

3

2
𝑈𝑊 = 0                        (37) 

Taking the homogeneous balance between 

the highest order derivatives and nonlinear 

terms in Eqs. (35), (36) and (37), we obtain 

that N = 2 in Eq. (35), N = 2 in Eq. (36), and 

N = 2 in Eq. (37). Thus, the solution of Eqs. 

(35)-(37) takes the following form:  

𝑈(𝜁) = 𝑎0 + 𝑎1exp(−Φ(𝜁)) + 𝑎2(exp(−Φ(𝜁)))2(38) 

𝑉(𝜁) = 𝑏0 + 𝑏1exp(−Φ(𝜁)) + 𝑏2(exp(−Φ(𝜁)))2 (39) 

𝑊(𝜁) = 𝑑0 + 𝑑1exp(−Φ(𝜁)) + 𝑑2(exp(−Φ(𝜁)))2  

(40) 

where aj, bj, and dj are constants to be de-

termined. Substituting Eqs. (38)-(40) into Eq. 

(35), (36), and (37), then setting the coeffi-

cients of exp(−Φ(ζ)) to zero, we get a set of 

algebraic equations for the parameters a0, 



42 Abu-Alhamed and Elboree                                                                  SVU-IJBS, VOL.2, NO. 1, (2025), 37‒47      

a1, a2, b0, b1, b2, d0, d1, d2, τ and κ . By solv-

ing this system, we yield 

𝑎0 =
1

3
𝜏 −

2

3
𝑐, 𝑎1 =

1

3
, 𝑎2 =

1

3
, 𝑏0 = 𝑏0,                   

𝑏1 =
2𝑏0

𝜅
, 𝑏2 = 0, 𝑑0 = 𝑑0, 𝑑1 = 𝑑1, 𝑑2 = 𝑑2 (41) 

By substituting Eqs. (6)-(10) into Eqs. (38)-

(40), we get the following traveling wave 

solutions of the new coupled KdV model 

equations.  

When τ ≠ 0 and κ2 − 4τ > 0, we have  

     𝑢6(𝑥, 𝑡) = 𝑎0 

−
2𝑎1𝜏

√𝜅2 − 4𝜏 tanh (
1
2 √2𝜅2 − 8𝜏(𝐷 + 𝑥 − 𝑐𝑡)) + 𝜅

 

+
2𝑎2𝜏2

(√𝜅2 − 4𝜏tanh (
1
2 √2𝜅2 − 8𝜏(𝐷 + 𝑥 − 𝑐𝑡)) + 𝜅)

2  (42) 

𝑣6(𝑥, 𝑡) = 𝑏0 

−
2𝑏1𝜏

√𝜅2 − 4𝜏 tanh (
1
2 √2𝜅2 − 8𝜏(𝐷 + 𝑥 − 𝑐𝑡)) + 𝜅

 

+
4𝑏2𝜏2

(√𝜅2 − 4𝜏tanh (
1
2 √2𝜅2 − 8𝜏(𝐷 + 𝑥 − 𝑐𝑡)) + 𝜅)

2  (43) 

𝑤6(𝑥, 𝑡) = 𝑑0 

−
2𝑑1𝜏

√𝜅2 − 4𝜏 tanh (
1
2 √2𝜅2 − 8𝜏(𝐷 + 𝑥 − 𝑐𝑡)) + 𝜅

 

+
4𝑑2𝜏2

(√𝜅2 − 4𝜏tanh (
1
2 √2𝜅2 − 8𝜏(𝐷 + 𝑥 − 𝑐𝑡)) + 𝜅)

2        (44) 

When τ ≠ 0 and κ2 − 4τ < 0, we have  

    𝑢7(𝑥, 𝑡) = 𝑎0 

+
2𝑎1𝜏

√4𝜏 − 𝜅2tan (
1
2 √8𝜏 − 2𝜅2(𝐷 + 𝑥 − 𝑐𝑡)) − 𝜅

 

+
4𝑎2𝜏2

(√4𝜏 − 𝜅2tan (
1
2 √8𝜏 − 2𝜅2(𝐷 + 𝑥 − 𝑐𝑡)) − 𝜅)

2   (45) 

  𝑣7(𝑥, 𝑡) = 𝑏0 

+
2𝑏1𝜏

√4𝜏 − 𝜅2 tan (
1
2 √8𝜏 − 2𝜅2(𝐷 + 𝑥 − 𝑐𝑡)) − 𝜅

 

+
4𝑏2𝜏2

(√4𝜏 − 𝜅2tan (
1
2 √8𝜏 − 2𝜅2(𝐷 + 𝑥 − 𝑐𝑡)) − 𝜅)

2 (46) 

𝑤7(𝑥, 𝑡) = 𝑑0 

+
2𝑑1𝜏

√4𝜏 − 𝜅2 tan (
1
2 √8𝜏 − 2𝜅2(𝐷 + 𝑥 − 𝑐𝑡)) − 𝜅

 

+
4𝑑2𝜏2

(√4𝜏 − 𝜅2tan (
1
2 √8𝜏 − 2𝜅2(𝐷 + 𝑥 − 𝑐𝑡)) − 𝜅)

2 (47) 

When τ = 0, κ ≠ 0 and κ2 − 4τ > 0, we have 

𝑢8(𝑥, 𝑡) = 𝑎0 +
𝑎1𝜅

exp(𝜅(𝐷 + 𝑥 − 𝑐𝑡) − 1)
 

+
𝑎2𝜅2

(exp(𝜅(𝐷 + 𝑥 − 𝑐𝑡)) − 1)2
          (48) 

𝑣8(𝑥, 𝑡) = 𝑏0 +
𝑏1𝜅

exp(𝜅(𝐷 + 𝑥 − 𝑐𝑡) − 1)
 

+
𝑏2𝜅2

(exp(𝜅(𝐷 + 𝑥 − 𝑐𝑡)) − 1)2
  (49) 

𝑤8(𝑥, 𝑡) = 𝑑0 +
𝑑1𝜅

exp(𝜅(𝐷 + 𝑥 − 𝑐𝑡) − 1)
 

+
𝑑2𝜅2

(exp(𝜅(𝐷 + 𝑥 − 𝑐𝑡)) − 1)2
           (50) 

When τ ≠ 0, κ ≠ 0 and κ2 − 4τ = 0, we have 

𝑢9(𝑥, 𝑡) = 𝑎0 −
𝑎1𝜅2(𝐷+𝑥−𝑐𝑡)

2𝜅(𝐷+𝑥−𝑐𝑡)+4
+

𝑎2𝜅4(𝐷+𝑥−𝑐𝑡)2

(2𝜅(𝐷+𝑥−𝑐𝑡)+4)2  

(51) 

𝑣9(𝑥, 𝑡) = 𝑏0 −
𝑏1𝜅2(𝐷+𝑥−𝑐𝑡)

2𝜅(𝐷+𝑥−𝑐𝑡)+4
+

𝑏2𝜅4(𝐷+𝑥−𝑐𝑡)2

(2𝜅(𝐷+𝑥−𝑐𝑡)+4)2   

(52) 

𝑤9(𝑥, 𝑡) = 𝑑0 −
𝑑1𝜅2(𝐷+𝑥−𝑐𝑡)

2𝜅(𝐷+𝑥−𝑐𝑡)+4
+

𝑑2𝜅4(𝐷+𝑥−𝑐𝑡)2

(2𝜅(𝐷+𝑥−𝑐𝑡)+4)2. 

(53) 
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When τ = 0, κ = 0 and κ2 − 4τ = 0, we have  

  𝑢10(𝑥, 𝑡) = 𝑎0 +
𝑎1

𝐷+𝑥−𝑐𝑡
+

𝑎2

(𝐷+𝑥−𝑐𝑡)2             (54) 

 𝑣10(𝑥, 𝑡) = 𝑏0 +
𝑏1

𝐷+𝑥−𝑐𝑡
+

𝑏2

(𝐷+𝑥−𝑐𝑡)2              (55) 

  𝑤10(𝑥, 𝑡) = 𝑑0 +
𝑑1

𝐷+𝑥−𝑐𝑡
+

𝑑2

(𝐷+𝑥−𝑐𝑡)2            (56) 

where D is an integration constant.  

4. Physical significance  

In this part, we study the physical interpre-

tations and graphical representation of trav-

eling wave solutions of the coupled 

Whitham-Broer-Kaup equation and the new 

coupled KdV equation. It is worth noting that 

the delicate balance between the nonlinear-

ity effect and the dissipative effect gives rise 

to solitons that maintain their speed and 

shape when interacting with others com-

pletely. This indicates that following nonlin-

ear interaction, the amplitude, velocity, and 

wave shape of solitons remain unchanged 

and display fully elastic collisions. There-

fore, the elastic property describes the 

physically traveling wave solutions, and 

these solutions are shown graphically in 

Figures 1-9.  

A. The Coupled Whitham-Broer-Kaup 

equation 

This part presents the physical interpreta-

tion of the traveling wave solutions of the 

coupled Whitham-Broer-Kaup equation. It is 

observed that the coupled Whitham-Broer-

Kaup equation gives several traveling wave 

solutions in the x-y plane, including kink-

type, periodic traveling waves, singular 

cuspon type as well as plane-waves solu-

tions. Fig. 1 shows the wave profiles corre-

sponding to the solutions u1 and v1 of the 

coupled Whitham-Broer-Kaup equation for 

a0 = 1, a1 = 1, τ = 1, κ = 3, c = 5, D = 1, b0 =
11

2
, b1 = 7, b2 =

1

2
, y = 0, z = 0 and −10 ≤ x ≤

10, −10 ≤ t ≤ 10. It is noticed that in the x-y 

plane, the traveling wave solutions 𝑢1 and 𝑣1 

initially represent kink-type soliton. Travel-

ing waves that emerge from one asymptotic 

state to another are known as kink waves. 

This soliton is classified as a topological soli-

ton. Furthermore, after the interactions, it is 

noted that the waves’ amplitude and shape 

gradually decrease. They drop to zero in the 

final condition, indicating that the solitonic 

excitations are not fully elastic. 

 

Figure 1: 3-D plot of the kink traveling wave 

solutions of 𝑢1 and 𝑣1 with −10 ≤ 𝑥 ≤ 10, 

−10 ≤ 𝑡 ≤ 10 respectively. 

 

Fig. 2 presents the wave profiles corre-

sponding to the solutions 𝑢2 and 𝑣2 for a0 =

1, a1 = 1, τ =
1

2
, κ = 1, c = 1, D = 2, b0 = 1, 

b1 = 1, b2 =
1

2
, y = 0, z = 0 and −10 ≤ x ≤ 10, 

−10 ≤ t ≤ 10. The solutions u2 and v2 form 

the exact periodic traveling wave solutions 

of the Whitham-Broer-Kaup equation in the 

x-y plane. It turns out that the solutions of 

periodic waves do not change. That is, after 

the nonlinear interaction, the solution of the 

periodic wave is fully flexible.  

 

Figure 2: 3-D plot of the periodic traveling 

wave solutions of 𝑢2 and 𝑣2 with −10 ≤ 𝑥 ≤
10, −10 ≤ 𝑡 ≤ 10 respectively. 
 

The exact solutions 𝑢3, 𝑢4, 𝑢5, and 𝑣4 repre-

sent the plane-waves solutions of the cou-

pled Whitham-Broer-Kaup equation in the x-

y plane. Shape of Eq. (24) (𝑢3) with a0 = 1, 

a1 = 1, τ = 0, κ = 1, c = 2, D = 2, y = 0, z = 0. 

Eq. (26) (𝑢4) with 𝑎0 = 1, 𝑎1 = 1, 𝜏 = 1, 𝜅 = 2, 

c = 2, D = 5, y = 0, z = 0. Eq. (27) (𝑣4) with 

𝑏0 =
11

2
, 𝑏1 = 6, 𝑏2 =

1

2
, 𝜏 = 1, 𝜅 = 2, c = 5, 

𝐷 =
1

2
, y = 0, z = 0, and Eq. (28) (𝑢5) with 
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𝑎0 = 1, 𝑎1 = 1, 𝜏 = 0, 𝜅 = 0, c = 3, D = 10, y = 

0, z = 0 into the interval −10 ≤ 𝑥 ≤ 10, −10 ≤
𝑡 ≤ 10 (see Figs. 3-5).  

 

 

Figure 3: (a) 3-D plot of the plane-wave so-

lution of 𝑢3 with −10 ≤ x ≤ 10, −10 ≤ 𝑡 ≤ 10, 

(b) 3-D plot of the singular cuspon of 𝑣3 with 

−10 ≤ 𝑥 ≤ 10, −10 ≤ 𝑡 ≤ 10. 

 

The exact solutions 𝑣3 and 𝑣5 are singular 

cuspon of the coupled Whitham-Broer-Kaup 

equation in the x-y plane. Shape of Eq. (25) 

(v3) with b0 = 0, b1 =
1

2
, b2 =

1

2
, τ = 0, κ = 1, 

c =
1

2
, D = 2, y = 0, z = 0, y = 0, z = 0, and Eq. 

(29) (v5) with b0 =
1

2
, b1 = 0, b2 =

1

2
, τ = 0, 

κ = 0, c = 1, D = 3, y = 0, z = 0 into the inter-

val −10 ≤ x ≤ 10, −10 ≤ t ≤ 10 (see Figs. (3) 

and (5)).  

 

 
Figure 4: 3-D plot of the plane-waves solu-

tions of 𝑢4 and 𝑣4 with −10 ≤ 𝑥 ≤ 10, −10 ≤
𝑡 ≤ 10 respectively. 
 

 

Figure 5: (a) 3-D plot of the plane-wave so-

lution of 𝑢5 with −10 ≤ 𝑥 ≤ 10, −10 ≤ 𝑡 ≤ 10, 

(b) 3-D plot of the singular cuspon of 𝑣5 

with −10 ≤ 𝑥 ≤ 10, −10 ≤ 𝑡 ≤ 10. 

B. The new coupled KdV equation: The 

physical interpretation of the traveling wave 

solutions of the new coupled KdV will now 

be discussed. Different types of traveling 

waves have been deduced for the new cou-

pled KdV equation, such as bell-type soli-

tary waves, kink-type, periodic traveling 

waves, singular kink-type, singular cuspon 

type as well as plane-wave solutions.  

Fig. 6 depicts the wave profiles correspond-

ing to the solutions 𝑢6, 𝑣6, and 𝑤6 for a0 =

−
1

3
, a1 = 1, a2 =

1

3
, b0 = 1, b1 =

2

3
, b2 = 0, 

d0 = 1, d1 = 1, d2 = 1, τ = 1, κ = 3, c = 1, D =
1

2
, y = 0, z = 0 and −5 ≤ x ≤ 5, −5 ≤ t ≤ 5.  

 

 

Figure 6: (a) 3-D plot of the bell-type soli-

tary wave of 𝑢6 with −10 ≤ 𝑥 ≤ 10, −10 ≤
𝑡 ≤ 10, (b) and (c) 3-D plot of the kink-type 

soliton of 𝑣6 and 𝑤6 with −10 ≤ 𝑥 ≤ 10, 

−10 ≤ 𝑡 ≤ 10 respectively 

From Fig. 6, we observe that the traveling 

wave solution 𝑢6 is a bell-type solitary wave 

with infinite support or infinite tails. This sol-

iton is characterized as a non-topological 

soliton. After the interaction, it was found 

that the amplitude and width of these waves 

decrease with increasing time t. We also 

note that in the x-y plane, the traveling wave 

solutions 𝑣6 and 𝑤6 represent kink-type soli-

ton. 

Fig. 7 presents the wave profiles corre-

sponding to the solutions 𝑢7, 𝑣7 and 𝑤7 

which are the exact periodic traveling wave 

solutions of the new coupled KdV equation 

in the x-y plane. Shape of Eq. (45) (u7) with 

a0 = −.4333333334, a1 =
1

3
, a2 =

1

3
, τ = 0.7, 

κ = 1, c = 1, D = 1, y = 0, z = 0. Eq. (46) (v7) 

with b0 = 1, b1 = 2, b2 = 0, τ =
1

2
, κ = 1, c = 
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1, D = 1, y = 0, z = 0 and Eq. (47) (w7) with 

d0 = 1, d1 = 1, d2 = 1, τ = 1, κ = 1, c = 1, D =
2, y = 0, z = 0 into the interval −5 ≤ x ≤ 5, 

−5 ≤ t ≤ 5. 

 

Figure 7: 3-D plot of the periodic traveling 

wave solutions of 𝑢7, 𝑣7 and 𝑤7 with −10 ≤
𝑥 ≤ 10, −10 ≤ 𝑡 ≤ 10 respectively. 

 

Fig. 8 shows the wave profiles correspond-

ing to the solutions 𝑢8, 𝑣8 and 𝑤8 for a0 =

−
2

3
, a1 =

1

3
, a2 =

1

3
, b0 = 1, b1 = 2, b2 = 0, 

d0 = 1, d1 = 1, d2 = 1, τ = 0, κ = 1, c = 1, D =
2, y = 0, z = 0 and −5 ≤ x ≤ 5, −5 ≤ t ≤ 5. 

From Fig. 8, we notice that the traveling 

wave solutions 𝑢8 and 𝑤8 represent singular 

kink-type solutions while the traveling wave 

solution 𝑣8 represents the plane-wave solu-

tion.  

Fig. 9 exhibits the wave profiles corre-

sponding to the solutions 𝑢9, 𝑣9 and 𝑤9 for 

a0 = −
1

3
, a1 =

2

3
, a2 =

1

3
, b0 = 1, b1 = 1, b2 =

0, d0 = 1, d1 = 1, d2 = 1, τ = 1, κ = 2, c = 1, 

D =
1

2
, y = 0, z = 0 and −5 ≤ x ≤ 5, −5 ≤ t ≤

5. The exact solutions 𝑢9 and 𝑤9 represent 

singular cuspon while the exact solution 𝑣9 

represents the plane-wave solution. 

Cuspons are distinguished from other soli-

tons by the presence of cusps at the crests of 

their solitons. 

 

Figure 8: (a) and (c) 3-D plot of the singular 

Kink-type solutions of 𝑢8 and 𝑤8 with −10 ≤
𝑥 ≤ 10, −10 ≤ 𝑡 ≤ 10 respectively, (b) 3-D 

plot of the plane-wave solution of 𝑣8 with 

−10 ≤ 𝑥 ≤ 10, −10 ≤ 𝑡 ≤ 10. 
 

 

 

Figure 9: (a) and (c) 3-D plot of the singular 

cuspon of 𝑢9 and 𝑤9 with −10 ≤ 𝑥 ≤ 10, 

−10 ≤ 𝑡 ≤ 10 respectively, (b) 3-D plot of 

the plane-wave solution of 𝑣9 with −10 ≤ 𝑥 ≤
10, −10 ≤ 𝑡 ≤ 10. 

 

5. Comparison 

Several authors have employed various 

techniques to find the traveling wave solu-

tions for the coupled Whitham-Broer-Kaup 

equation and the new coupled KdV equa-

tion. For example, Abbasbandy (Abbas-

bandy, 2007) employed the homotopy anal-

ysis method to obtain the traveling wave so-

lutions of the coupled KdV equation; addi-

tionally, Rashidi et al. (Rashidi et al., 2008) 

utilized the homotopy analysis method to 

derive the solutions of the coupled 

Whitham-Broer-Kaup equations. We ob-

served that the solutions derived by Abbas-

bandy (Abbasbandy, 2007) and Rashidi et 

al. (Rashidi et al., 2008) are different from 

the solutions obtained by applying the 

exp(−Φ(ζ)) expansion method. The main 

advantage of the proposed approach is that 

these solutions are new and have not been 

published in any other literature. It is worth 

noting that these new solutions are obtained 

through very simple and easy calculations. 

Likewise, it can be demonstrated that the 

suggested method is much simpler than al-

ternative methods for any nonlinear evolu-

tion equation. 

6. Conclusion 

In this study, the exp(−Φ(ζ)) expansion 

method is successfully applied to derive ex-

act solutions to the nonlinear coupled 
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Whitham-Broer-Kaup equation and the new 

coupled KdV equation. The traveling wave 

solutions were obtained in the form of expo-

nential functions, hyperbolic functions, trig-

onometric functions, and rational functions. 

These solutions have many applications in 

quantum field theory, fluid mechanics, non-

linear optics, and plasma physics. By com-

paring the results of the exp(−Φ(ζ)) expan-

sion method with the results of the ho-

motopy analysis method, we conclude that 

the solutions obtained are novel and have 

not been found elsewhere. We observe that 

the exp(−Φ(ζ)) expansion technique is an 

easy, straightforward, and constructive 

method to obtain new traveling wave solu-

tions. Results demonstrate that the 

exp(−Φ(ζ)) expansion technique is very ef-

fective for solving many other NLEEs. 
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